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A B S T R A C T

Purpose: The type of pituitary adenoma (PA) cannot be clearly recognized with preoperative magnetic resonance
imaging (MRI) but can be classified with immunohistochemical staining after surgery. In this study, a model to
precisely immunohistochemically classify the PA subtypes by radiomic features based on preoperative MR
images was developed.
Methods: Two hundred thirty-five pathologically diagnosed PAs, including t-box pituitary transcription factor
(Tpit) family tumors (n = 55), pituitary transcription factor 1 (Pit-1) family tumors (n = 110), and steroido-
genic factor 1 (SF-1) family tumors (n = 70), were retrospectively studied. T1-weighted, T2-weighted and
contrast-enhanced T1-weighted images were obtained from all patients. Through imaging acquisition, feature
extraction and radiomic data processing, 18 radiomic features were used to train support vector machine (SVM),
k-nearest neighbors (KNN) and Naïve Bayes (NBs) models. Ten-fold cross-validation was applied to evaluate the
performance of these models.
Results: The SVM model showed high performance (balanced accuracy 0.89, AUC 0.9549) whereas the KNN
(balanced accuracy 0.83, AUC 0.9266) and NBs (balanced accuracy 0.80, AUC 0.9324) models displayed low
performance based on the T2-weighted images. The performance of the T2-weighted images was better than that
of the other two MR sequences. Additionally, significant sensitivity (P = 0.031) and specificity (P = 0.012)
differences were observed when classifying the PA subtypes by T2-weighted images.
Conclusions: The SVM model was superior to the KNN and NBs models and can potentially precisely im-
munohistochemically classify PA subtypes with an MR-based radiomic analysis. The developed model exhibited
good performance using T2-weighted images and might offer potential guidance to neurosurgeons in clinical
decision-making before surgery.

1. Introduction

Pituitary adenomas (PAs) are considered common benign neu-
roendocrine neoplasms that arise from the anterior pituitary gland.
These tumors are contained primarily in the sellar region though they
may grow up to the suprasellar region, down to the clivus or extend to
the parasellar region. The prevalence of PAs is 80–90 cases per 100,000
population every year, and PAs account for approximately 15 % of

brain tumors [1–4].
PAs are classified into microadenoma (< 1 cm), macroadenoma

(1−4 cm) and giant adenoma (> 4 cm). Additionally, they have been
considered hormone hypersecretion adenomas and nonfunctioning PAs
because of the hormone levels in circulation [5,6]. Recently, PAs have
been classified based on the combination of tumor hormonal content
and pituitary transcription factors [7–9]. Transcription factors, in-
cluding t-box pituitary transcription factor (Tpit), pituitary
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transcription factor 1 (Pit-1) and steroidogenic factor 1 (SF-1), can
regulate hormonal activity and adenohypophyseal cell differentiation
[8,9]. Corticotroph tumors that express adrenocorticotropic hormone
arise from the Tpit lineage, while somatotroph tumors expressing
growth hormone and lactotroph tumors expressing prolactin arise from
Pit-1. Additionally, gonadotroph tumors expressing β-follicle-stimu-
lating hormone, β-luteinizing hormone or α-subunits arise from SF-1
[10,11]. Therefore, immunohistochemical staining is still the main
technological method for classifying PAs [11,12].

The treatments of PAs include transsphenoidal surgery, medication,
radiotherapy and observation [13]. Different types of PAs are treated
differently [13,14]. Most lactotroph tumor patients treated with med-
ications have better outcomes [15]. However, not all patients with
prolactin tumors have significantly high prolactin levels; therefore, it is
essential for clinicians to choose the optimal treatment [16]. Ad-
ditionally, silent corticotroph tumors and Crooke’s cell adenomas are
highly aggressive [11,12] and have a high risk for recurrence [10].
Therefore, these patients should be carefully followed clinically
[17–19]. Thus, precisely classifying PAs can substantially benefit pa-
tients with normal or slightly abnormal hormone levels in circulation,
especially patients with a high risk of recurrence. The correct PA clas-
sification can help patients avoid unnecessary pituitary surgery. To
address this problem, we developed a classification model to precisely
classify PA subtypes before surgery with radiomics using a machine
learning (ML) approach.

Radiomics converts medical imaging data into large amounts of
quantitative image features. At present, it has been widely used to ex-
tract all kinds of tumor features [20–22]. In this study, we attempted to
develop a robust model based on ML to classify PA subtypes using
magnetic resonance imaging (MRI) sequences (T1-weighted, T2-
weighted, and contrast-enhanced T1-weighted images).

2. Materials and methods

2.1. Patient population

A total of 235 patients with histologically confirmed PA and with
corresponding preoperative MR images from the Neurosurgery
Department were retrospectively included in this single-center study
between January 2016 and February 2019. The clinical characteristics,
including sex, age, hormone-hypersecreting tumors, Knosp grade, and
tumor diameter, were collected. Two experienced neuropathologists in
the Pathology Department from the aforementioned hospital reviewed
all diagnostic materials from the archived histopathological slides for
all patients to obtain an accurate PA diagnosis.

The inclusion criteria were as follows: (1) all patients were diag-
nosed with PAs by histology, and PAs were clearly graded by im-
munohistochemical staining; (2) the quality of the MR images was good
and without obvious artifacts; and (3) all of the MR images were ob-
tained within one week before surgery. The exclusion criteria included
the following: (1) patients who had undergone surgery or radiotherapy
for PA; (2) PAs with no clear immunohistochemical staining; (3) poor
MR image quality with obvious artifacts.

2.2. MRI acquisition

All patients underwent MRI of the sellar region with an MRI scanner
(Siemens, 3.0 T, Trio, Germany) by the same coil, consisting of T1-
weighted, T2-weighted and contrast-enhanced T1-weighted images. In
addition, all sequence images were measured by a 2D-spin echo se-
quence. The specific parameters for the coronal MRI acquisition settings
that were defined for these MRI modalities are provided in Table 1. We
obtained all Digital Imaging and Communications in Medicine (DICOM)
MR images from image archives and communication systems for further
qualitative and quantitative analysis.

2.3. Tumor segmentation

All the MR images were loaded onto the open source software ITK-
SNAP (version 3.8.0, www.itk-snap.org), and a three-dimensional re-
gion-of-interest (ROI) covered the whole tumor and was delineated on
each slice of the MR images. This manual tumor segmentation was
performed individually by one neurosurgeon and one neuroradiologist
(with 14 and 13 years of experience in neuro-oncology diagnosis, re-
spectively). Then, the results were reviewed by the corresponding au-
thor and another expert radiologist.

2.4. Radiomics feature extraction

The methodology to extract radiomics features was based on the
segmentation results from the aforementioned section. Then, we used
the Simple ITK software library (http://www.simpleitk.org/) to read
each DICOM image slice of each MR sequence for every patient and
integrated them into one three-dimensional original nearly raw raster
data (NRRD) image. The same process was also performed for each
image slice with an ROI mask, generating a three-dimensional labeled
NRRD image. Then, we standardized the original image ( =

−f(x) x μ
σ

x
x

,
where x and f(x) are the original and normalized intensities, respec-
tively, and μx and σx are the mean and standard deviation of the image
intensity values, respectively) and transformed it with a wavelet
transform.

Afterward, we used PyRadiomics 1.2.0 (https://pyradiomics.
readthedocs.io/) to extract radiomics features. Eighteen first-order
statistical features were extracted from the original images, including
14 shape features, 22 gray level cooccurrence matrix (GLCM) features,
16 gray level run length matrix (GLRLM) features, 16 gray level size
zone matrix (GLSZM) features, and 14 gray level dependence matrix
(GLDM) features. Thus, a total of 100 features were extracted from the
original images of each MR sequence. Additionally, 688 texture features
of the same type were extracted from eight wavelet transform images.
Therefore, 788 individual radiomics features were extracted from each
MR sequence. The details of the feature descriptions can be found
elsewhere (http://www.radiomics.io/pyradiomics.html).

2.5. Data preprocessing

Class balance is a key factor to reveal the actual performance of ML
classifiers [23]. Moreover, since the incidence of the Tpit family tumors
was approximately 10–15 % of all PAs [24], the numbers of Tpit family
tumors were the smallest among these three types. Meanwhile, each
subtype was partitioned into 10 subsets, 9 of which were randomly used
to train the classifiers, and the remaining subset was used for valida-
tion. First, the training set was standardized. Then, these 297 training
samples were also standardized with the standard scaler package
(https://scikit-learn.org/stable/modules/preprocessing.html). Through
standardization, the mean of the data was mapped to zero, and the
standard deviation was mapped to 1. In addition, the standardized
formula was =

−f(x) x μ
σ

x
x

, where x and f(x) are the original and nor-
malized samples, respectively, and μx and σx are the mean and standard
deviation of the sample values, respectively. Furthermore, the stan-
dardized model in the training set was applied to the test set. Con-
sidering the data balance, the sample size of the SF-1 family tumors and
Tpit family tumors in the training set was increased to 99, which was
equal to the training set samples of Pit-1 family tumors, by adopting the
datasets augmentation approach (SMOTE [25], https://pypi.org/
project/imbalanced-learn/).

2.6. Dimensional reduction

Because high-dimensional radiomic features may contain redundant
and irrelevant information, which may result in overfitting and
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decrease the performance of the classifiers, dimensional reduction was
necessary [23]. To achieve the best dimensionality reduction effect and
effectively avoid over-fitting, ten-fold cross-validation was carried out
with reduced dimensionality of the training set and test set. Then, 1–54
dimensions were tested. In addition, the performance of 18 dimensions
was better than that of any other dimensions. Therefore, the 788 in-
dividual radiomic features were reduced to 18 radiomic features.

2.7. Classification methods and model development

Three common ML methods were used separately: support vector
machine (SVM, https://scikit-learn.org/stable/modules/svm.html,
scikit-learn software package) with the linear kernel function, k-nearest
neighbors (KNN, https://scikit-learn.org/stable/modules/neighbors.
html, n neighbors = 3) and Naïve Bayes (NBs, https://scikit-learn.
org/stable/modules/naive_bayes.html). Ten-fold cross-validation was
applied to evaluate the performance of the classifiers with reduced
features in classifying PA subtypes. The overall workflow of radiomics
processing is shown in Fig. 1.

2.8. Statistical analysis

Statistical analysis was performed by using SPSS v.23.0 (Armonk,
New York, United States). The continuous variables, which are ex-
pressed as the means± standard deviations, and categorical variables
of the PA subtypes were compared by one-way ANOVA. In addition, the
sensitivity, specificity and accuracy were compared by a nonparametric
test (Mann-Whitney U test). A two-sided P value less than 0.05 was
considered statistically significant. The performance of each PA subtype
in every MR sequence was measured by using confusion matrix-derived
metrics, including sensitivity, specificity, accuracy and the area under
the curve (AUC) value of the receiver operating characteristic (ROC)
curve. Additionally, we used the macro-average ROC to evaluate the
performance of the multiclassification classifiers.

3. Results

3.1. Clinical characteristics of each PA subtype

Pit-1 family tumors (59.09 %) and Tpit family tumors (58.18 %)
occurred more frequently in female patients than in male patients; in
contrast, SF-1 family tumors (58.57 %) occurred more frequently in
male patients than in female patients. The mean age of patients was
42.87 years old (ranging from 14 to 75 years old) for those with Pit-1
family tumors, 58.73 years old (ranging from 23 to 75 years old) for
those with Tpit family tumors, and 45.44 years old (ranging from 13 to
76 years) for those with SF-1 family tumors. Hormone-hypersecreting
tumors were the most common in Pit-1 family tumors (74.55 %) and the
least common in SF-1 family tumors (8.57 %). The tumor diameter in
the SF-1family tumors was the largest compared with that in the other
two types of family tumors (P< 0.001, Table 2). Grade 3–4 tumors
occurred more frequently than grade 0–2 tumors in SF-1 family tumors,
while the opposite trend was observed in Pit-1 family tumors and Tpit
family tumors (P = 0.001, Table 2).

3.2. Hyper-parameter optimization

During the process of adjusting the n neighbors in the KNN model,
ten-fold cross-validation was used to evaluate the value of k with its
value ranging from 1 to 9. According to the correlation between k and
the accuracy of the KNN model, when k equals 3, the performance was
the best (Fig. 2). Additionally, according to the pre-experiments (data
not shown), the performance of the linear model was much better than
that of the Gaussian kernel. Additionally, Niu et al. [26] reported that
the performance of the linear SVM model is better in the prediction of
cavernous sinus invasion by PAs. In this study, the correlation between
the dimension and the accuracy showed that there was no over-fitting
phenomenon in the 18 dimensions, but the accuracy decreased while
the trend tended to be stable after 18 dimensions (Fig. 3)

3.3. Confusion matrix for classifying PA subtypes in each MR sequence

Fig. 4 shows the mean confusion matrix results for accurately

Table 1
MRI modalities of each sequence for pituitary adenoma examination FoV: Field of view, MRI: Magnetic resonance imaging, TE: echo time, TR: repetition time.

TR (ms) TE (ms) Fov (mm) Slice thickness (mm) Slice Voxel size (mm)

T1-weighted 600 8.1 200 2 16 0.8*0.6*2.0
T2-weighted 4000 93 220 2 16 0.8*0.6*2.0
Contrast enhanced T1-weighted 232 8.1 200 2 16 0.9*0.6*2.0

FoV: Field of view, MRI: Magnetic resonance imaging, TE: echo time, TR: repetition time.

Fig. 1. The overall workflow of radiomics processing.
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classifying each PA subtype in T1-weighted, T2-weighted and contrast-
enhanced T1-weighted images on three classifiers. These matrix results
were constructed by ten-fold cross-validation in the test set of each MR
sequence. According to the mean matrix results, the performance of the
SVM model (Fig. 4A–C) was better than that of the KNN (Fig. 4D–F) and
NBs (Fig. 4G–I) models in T1-weighted, T2-weighted and contrast-en-
hanced T1-weighted images. Additionally, based on the mean accuracy
results, the SVM model, compared with the KNN and NBs models, was
the best model for immunohistochemically classifying PA subtypes
(Table 3). Additionally, the SVM model showed a good performance

(balanced accuracy 0.89), whereas the KNN (balanced accuracy 0.83)
and NBs (balanced accuracy 0.80) models showed weak performance
based on T2-weighted images (Table 3). The classification of each PA
subtype with the SVM model in T2-weighted images (Fig. 4B) showed
better performance than the model in T1-weighted (Fig. 4A) and con-
trast-enhanced T1-weighted (Fig. 4C) images. Moreover, the perfor-
mance of each fold for the confusion matrix of the SVM model is shown
in the Supplementary file (Figs. 1–3).

3.4. Results of the comparison of each MR sequence for classifying PA
subtypes with the SVM model

The classification results of the PA subtypes for each MR sequence
are given in Table 4. We obtained satisfactory classification results by
using the SVM model with the mean sensitivity, specificity and accu-
racy for each MR sequence of the PA subtypes (Table 4). The perfor-
mance of T2-weighted images was better than that of the other two MR
sequences, and significant differences in sensitivity (P = 0.031) and
specificity (P = 0.012) in classifying the PA subtypes in T2-weighted
images were observed. However, the accuracy for classifying each PA
subtype in T2-weighted images was similar (P = 0.401), which de-
monstrated that the SVM model was more robust in T2-weighted
images compared with the other two MR images (Table 4).

3.5. Macro-average ROC curve for the evaluation of PA subtype
classification

Fig. 3 shows one of the 10 macro-average ROC curves and the ROC
curve of each PA subtype according to the SVM model in T1-weighted
(Fig. 5A), T2-weighted (Fig. 5B) and contrast-enhanced T1-weighted
(Fig. 5C) images, the KNN model in T1-weighted (Fig. 5D), T2-weighted
(Fig. 5E), and contrast-enhanced T1-weighted (Fig. 5F) images and the
NBs model in T1-weighted (Fig. 5G), T2-weighted (Fig. 5H), and con-
trast-enhanced T1-weighted (Fig. 5I) images. The mean AUC values
obtained with the SVM model were 0.8762, 0.9549 and 0.8806; those
from the KNN model were 0.8598, 0.9266 and 0.7947; and those from
the NBs model were 0.8492, 0.9324 and 0.8309 in T1-weighted, T2-
weighted and contrast-enhanced T1-weighted images, respectively. The
performance of the macro-average ROC curve and the ROC curve ob-
tained from these three models are shown in the Supplementary file
(Figs. 4–12). Additionally, the AUC values obtained from the SVM
model were higher than those obtained the other two models, as shown
in the Supplementary file (Figs. 4–6). Therefore, the macro-average
ROC curve for the evaluation of the multiclassifier showed that T2-
weighted images performed better than the other two MR sequences.

3.6. Radiomics features for the distribution of PA subtypes

A total of 788 individual radiomics features were extracted from one
patient. Surprisingly, the heat map with covariance analysis showed

Table 2
The basic characteristics for these three pituitary adenoma subtypes.

Pit-1 family tumors SF-1 family tumors Tpit family tumors P-value

Gender (%) 0.510
Male 45 (40.91 %) 41 (58.57 %) 23 (41.82 %)
Female 65 (59.09 %) 29 (41.43 %) 32 (58.18 %)
Age (years) 42.87± 12.39 50.13± 11.75 45.44± 14.19 0.527
Hormone hypersecreting tumors (%) <0.001
Yes 82 (74.55 %) 6 (8.57 %) 31 (56.36 %)
No 28 (25.45 %) 64 (91.43 %) 24 (43.64 %)
Knosp grade (%) 0.001
Grades 0–2 74 (67.27 %) 36 (51.43 %) 45 (81.82 %)
Grade 3–4 36 (32.73 %) 34 (48.57 %) 10 (18.18 %)
Tumor diameter (cm) 1.91±0.89 2.84± 0.84 1.40±1.17 <0.001

Tpit, t-box pituitary transcription factor; Pit-1, pituitary transcription factor 1; SF-1, steroidogenic factor 1.

Fig. 2. Correlation between the neighbor of KNN and the accuracy.
This picture shows that the performance of the KNN model was better when k
equaled 3.

Fig. 3. Correlation between reduced dimensionality and the accuracy.
This picture shows that the performance of the classifier model was the best
when the number of dimensions was 18. Additionally, there was no over-fitting
phenomenon with 18 dimensions, but the accuracy decreased, while the trend
tended to be stable after 18 dimensions.
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outstanding performance for differentiating Tpit family tumors from
Pit-1 family tumors and SF-1 family tumors with radiomics features in
T2-weighted images (Fig. 6). Fig. 6 shows the sample distribution. In
addition, different colors represent different numerical values, which
were used to judge the approximate distribution of the sample. In Fig. 6,
rows represent individual features, while columns represent individual
patients. Additionally, columns 0–55, 56–125, and 126–235 in Fig. 6
represent patients with Tpit family tumors, patients with SF-1 family
tumors, and patients with Pit-1 family tumors, respectively. According

Fig. 4. Mean confusion matrix results for accurately classifying each PA subtype with three ML models with ten-fold cross-validation in MR sequences.
The mean confusion matrix results for accurately classifying each PA subtype with the SVM model (A–C), the KNN model (D–F) and the NBs model (G–H) with ten-
fold cross-validation in T1-weighted (A, D, G), T2-weighted (B, E, H), and contrast-enhanced T1-weighted (C, F, I) images.

Table 3
The mean balanced accuracy of these three classifiers for each MR sequence.

Classifiers MR sequence

T1-weighted T2-weighted Contrast enhanced T1-weighted

SVM 0.77 0.89 0.71
KNN 0.72 0.83 0.65
NBs 0.66 0.80 0.65

Table 4
The classification results of the pituitary adenoma subtypes for each MR sequence.

Variables MR sequence Pit-1 family tumors SF-1 family tumors Tpit family tumors P-value

Sensitivity T1-weighted 0.76 0.83 0.75 0.134
T2-weighted 0.81 0.93 0.86 0.031
Contrast enhanced T1-weighted 0.74 0.71 0.69 0.703

Specificity T1-weighted 0.80 0.90 0.93 0.221
T2-weighted 0.82 0.89 0.85 0.012
Contrast enhanced T1-weighted 0.75 0.88 0.91 0.515

Accuracy T1-weighted 0.76 0.88 0.88 0.939
T2-weighted 0.91 0.94 0.91 0.401
Contrast enhanced T1-weighted 0.74 0.83 0.86 0.541

Tpit, t-box pituitary transcription factor; Pit-1, pituitary transcription factor 1; SF-1, steroidogenic factor 1.
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to the first three principal components after the dimensional reduction
of radiomics features, we also created a three-dimensional space plot
that demonstrated the spatial distribution of these three PA subtypes by
which they can be distinguished from each other on T2-weighted
images (Fig. 7).

4. Discussion

In this study, we found that our SVM model was superior to the KNN
and NBs models and has potential value in classifying PA subtypes with
radiomics analysis based on preoperative MR images. We demonstrated
that by using the ML approach, according to pituitary transcription
factors, PA subtypes can be precisely classified with preoperative cor-
onal MR images through feature extraction and quantitative analysis.
The results from our study suggested that coronal T2-weighted MR
sequences had better performance in classifying PA subtypes than T1-
weighted and contrast-enhanced T1-weighted sequences.

Currently, using the immunohistochemical characteristics of tumor
cells has been the main approach to accurately classify PAs. Moreover,
the 2017 WHO classification of PAs emphasizes the role of nuclear
transcription factors, including Tpit, Pit-1, and SF-1 in the classification
of PAs [8,10]. Hormone hypersecretion PAs are easy to classify, but PAs
that are hormone-negative before surgery are difficult to accurately
classify. Additionally, due to the lack of reliable antibodies against Tpit
in the market [10], Tpit family tumors cannot be accurately diagnosed.
In addition, some of the nonfunctioning PAs, including silent

Fig. 5. One of the ten macro-average ROC curves and the ROC curve of each PA subtype in MR sequences.
The AUC value for the macro-average ROC curve of each PA subtype with the SVM model (A–E), the KNN model (D–F) and the NBs model (G–H) with ten-fold cross-
validation in T1-weighted (A, D, G), T2-weighted (B, E, H), and contrast-enhanced T1-weighted (C, F, I) images.

Fig. 6. Heat map for differentiating the three PAs subtypes with radiomics
features in T2-weighted images.
This figure demonstrates the sample distribution, which could be judged
through color distribution. Rows represent individual features, while columns
represent individual patients. Additionally, columns 0–55, 56–125, and
126–235 represent each PA subtype.

A. Peng, et al. European Journal of Radiology 125 (2020) 108892

6



corticotroph tumors and Crooke’s cell adenomas, have a high risk of
aggression and recurrence after surgery [27,28]. Moreover, medication
is recommended for lactotroph tumors (a type of Pit-1 family tumor),
few of which need surgery [13]. Therefore, developing an ML-based
model to accurately classify PA subtypes by using MR images can
provide patients and their families with useful suggestions and offer
potential guidance for neurosurgeons in clinical decision-making before
surgery.

In this study, Pit-1 and Tpit family tumors showed a slight pre-
dominance in females, whereas SF-1 family tumors showed a slight
predominance in males that presented with older age (Table 2). Ad-
ditionally, most of the Pit-1 and Tpit family tumors had hormone hy-
persecretion with smaller tumors and less invasion of the cavernous
sinus than SF-1 family tumors (Table 2). Due to their nonfunctional SF-
1, growing tumors with compression in the structures surrounding the
sellar region often cause patients to experience symptoms including
visual impairment, headache, and especially hypopituitarism. The re-
sults in our study were consistent with those in previous reports
[10,29,30].

To our knowledge, only one study has been reported concerning
nonfunctioning PA types [22]. In this study, we built an SVM model to
accurately classify three PA subtypes with radiomics based on T1-
weighted, T2-weighted and contrast-enhanced weighted images
through ten-fold cross-validation, which may avoid sampling bias. We
found that the accuracy was higher for SF-1 family tumors in T1- and
T2-weighted images, whereas the accuracy was higher for Pit-1 family
tumors in contrast-enhanced T1-weighted images. This finding is
probably due to tumor characteristics, including size, texture con-
sistency or shape; additionally, the contrast agent influencing the in-
tensity of tumors may be another reason. Therefore, the potential me-
chanism needs to be further studied.

Data handling is an important process used to reveal the actual
performance of ML classifiers [23]. In our study, the images and data
were standardized for the following reasons: (1) to eliminate the di-
mensional relationship between variables to make the data comparable;
and (2) to improve the convergence speed and reduce the calculation
amount. Moreover, the high-dimensionality features of small data may

cause overfitting, and an imbalanced class can lead to misleading re-
sults [23]. In our study, PCA was used to select the sensitive compo-
nents features that would make our model more reliable and robust.
Furthermore, we found that the accuracy of classifiers with high-di-
mensionality features was slightly higher than that with dimensional
feature reduction (data not shown). The probable explanation for this
finding may be related to the relevant data and noise. In addition, an-
other possible reason may be that single features and multiple fusion
features play a common role in classification with high-dimensional
features. However, dimensional reduction can reduce the interference
caused by noise to the classification and improve the stability and ro-
bustness of the model. In this study, we found that the performance of
the classifier model was the best, and no over-fitting phenomenon was
observed when the radiomic features were reduced to approximately
2.5 % of the total radiomic features. Therefore, we selected ten-fold
cross-validation to evaluate the performance of our models with di-
mensional radiomics feature reduction. Surprisingly, we achieved sa-
tisfactory results.

In our study, we used feature extraction from only MR image se-
quences before surgery to classify PA subtypes. Additionally, our SVM
model was a multiclassifier model, while most previous studies
[22,31,32] performed binary classification for nonfunctioning PAs and
PA invasion of the cavernous sinus. Zeynalova et al. [33] reported that
the T2-weighted MR sequence was better in predicting the consistency
of pituitary macroadenomas with an ML-based approach. Additionally,
Kocak et al. [34] showed that texture analysis on T2-weighted images
by using the ML-based approach had better performance in predicting
the response to somatostatin analogs (SA) in GH-secreting macro-PAs.
Therefore, we speculate that the texture consistency of T2-weighted
images may be better than that of T1-weighted and contrast-enhanced
T1-weighted images, but this needs to be further explored in future
research. Zhang et al. [22] reported that T1-weighted MR images before
surgery performed better in discriminating nonfunctioning PA subtypes
than contrast-enhanced T1-weighted images with a radiomics ap-
proach. However, they did not compare T1-weighted images with T2-
weighted images. In this study, we used not only the accuracy, sensi-
tivity, specificity, and AUC of each PA subtype but also the macro-
average ROC curve to evaluate the performance of these three classi-
fiers (Fig. 7). We found that these three models can classify PA subtypes
on T2-weighted images, consistent with the aforementioned studies
[33,34].

In our study, the SVM model demonstrated a good classification
performance, whereas the KNN and NBs models demonstrated a lower
classification performance based on T2-weighted images. Probable ex-
planations for this finding may be as follows: (1) the radiomics feature
datasets with continuous values may affect the classification of the
probabilistic NBs model; and (2) the SVM classifies by finding a few
SVMs to obtain a good hyperplane, while the KNN model finds the data
most similar to the classified samples from all the data. Therefore, the
SVM is a sparse model, and the KNN is a nonsparse model. Additionally,
the SVM was robust to noise and overfitting [35], so the effect of the
SVM model was better than that of the KNN model.

Additionally, through color distribution, which can be used to judge
the approximate distribution of the samples, we found that high-di-
mensional features were correlated with each PA subtype and could be
used to differentiate these three PA subtypes (Fig. 6). Moreover, the
three-dimensional space plot demonstrated that these three PA sub-
types can be differentiated from each other with the first three principal
component features through PCA (Fig. 7). This finding illustrates that
these three PA subtypes may process their own MR characteristics, but
further research is needed.

Our study has some limitations. First, manually labeling tumors is a
time-consuming and laborious task, especially when the dataset is
large. This problem may be solved when our work on automatic tumor
recognition is finished. Second, all MR images were collected with one
type of MR machine from a single center. Different hospitals have

Fig. 7. A three-dimensional space plot demonstrates the spatial distribution of
the three PA subtypes.
The x, y and z axes represent the first three principal components after the
dimensional reduction of radiomics features in T2-weighted images. The blue
solid points, orange asterisks and green triangles represent patients with Tpit
family tumors, patients with SF-1 family tumors, and patients with Pit-1 family
tumors, respectively.
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different MR machines that produce different MR images. Therefore, a
future multicenter trial with different MR images is needed to validate
our model. Third, due to the lower incidence of thyrotroph adenomas
and plurihormonal adenomas, we did not include these patients;
therefore, the possibility of selection bias cannot be ignored. Finally, in
this study, we built models for classifying only three PA subtypes ac-
cording to pituitary transcription factors, but we did not continue to
classify growth hormone and lactotroph tumors that belong to Pit-1
family tumors. Therefore, further study needs to be explored to validate
our model.

5. Conclusions

We developed a robust SVM model with radiomics features based on
preoperative MR images to precisely immunohistochemically classify
PA subtypes. The SVM model using radiomics features extracted from
T2-weighted images had a better performance compared with that from
T1-weighted and contrast-enhanced T1-weighted images. This model
could offer useful suggestions to patients and their families and po-
tential guidance for neurosurgeons in clinical decision-making before
surgery.
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