
FLAD: A Human-centered Video Content Flaw Detection System
for Meeting Recordings

Haihan Duan
The Chinese University of
Hong Kong, Shenzhen

Shenzhen, China
haihanduan@link.cuhk.edu.cn

Junhua Liao
Sichuan University
Chengdu, China

liaojunhua@stu.scu.edu.cn

Lehao Lin
The Chinese University of
Hong Kong, Shenzhen

Shenzhen, China
lehaolin@link.cuhk.edu.cn

Wei Cai∗
The Chinese University of
Hong Kong, Shenzhen

Shenzhen, China
caiwei@cuhk.edu.cn

ABSTRACT
Widely adopted digital cameras and smartphones have generated a
large number of videos, which have brought a tremendousworkload
to video editors. Recently, a variety of automatic/semi-automatic
video editing methods have been proposed to tackle this issue in
some specific areas. However, for the production of meeting record-
ings, the existing studies highly depend on additional conditions
of conference venues, like infrared camera or special microphone,
which are not practical. Moreover, current video quality assessment
works mainly focus on the quality loss after compression or encod-
ing rather than the human-centered video content flaws. In this
paper, we design and implement FLAD, a human-centered video
content flaw detection system for meeting recordings, which could
build a bridge between subjective sense and objective measures
from a human-centered perspective. The experimental results il-
lustrate the proposed algorithms could achieve the state-of-the-art
video content flaw detection performance for meeting recordings.

CCS CONCEPTS
• Human-centered computing → Visual analytics; • Comput-
ing methodologies → Visual content-based indexing and re-
trieval.
KEYWORDS
Video Editing; Meeting Recordings; Human-centered Computing;
Video Quality Assessment
ACM Reference Format:
Haihan Duan, Junhua Liao, Lehao Lin, and Wei Cai. 2022. FLAD: A Human-
centered Video Content Flaw Detection System for Meeting Recordings.
In 32nd edition of the Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV ’22), June 17, 2022, Athlone, Ireland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3534088.3534349

1 INTRODUCTION
With the popularity of digital cameras and smartphones, the gener-
ation of videos becomes increasingly convenient with lower cost.
∗Wei Cai is the corresponding author. caiwei@cuhk.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOSSDAV ’22, June 17, 2022, Athlone, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9383-6/22/06. . . $15.00
https://doi.org/10.1145/3534088.3534349

At the same time, the tremendous amount of videos also brings a
heavy workload for professional video editors because of the post-
production of video materials. The development of multimedia and
computer vision provides promising technologies to relieve the
burden of professional video editors. In recent years, some fully
automatic video editing methods have achieved surprising perfor-
mance in specific areas, e.g. multiparty conversation [34], social
gatherings [46], school concerts [15], instructional videos for phys-
ical demonstrations [4], dialogue-driven scenes [16], dance videos
[39], and social cameras (cameras that are carried or worn by peo-
ple in activities) [2]. Otherwise, the participation of video editors
seems inevitable in other scenes, so semi-automatic or assistant
approaches are proposed, such as semantic zooming [21], narrated
videos [38], home video [6], and video montage from the text[40].

The aforementioned automatic/semi-automatic video editing
systems can effectively finish their task in specific areas, except
meeting recordings. In our daily life, various meetings are held
around the world every day, including academic conferences, sports
press conferences, enterprise annual conferences, and so on. The
meeting recording is relatively special in the various categories of
videos. From the perspective of quality requirement, an effective
meeting video must satisfy three criteria [29]: (1) It must capture
enough visual information to allow viewers to understand what
took place; (2) It must be compelling to watch; (3) It must not require
substantial human effort. According to the above principle, the final
output film of meeting recording only needs to capture sufficient
information for inferring the events while fewer after-effects are
required, but the tediously long videos bring a huge workload
for professional video editors. Specifically, our interview with a
video editor mentioned that the most time-consuming procedure is
flaw detection from video materials, while the editing principle for
meeting recordings is relatively simple that novices could handle.

However, the existing approaches cannot provide sufficient sup-
port for novices in editing meeting recordings. On the one hand,
the automatic/semi-automatic studies [17, 19, 29] aiming at the
generation of meeting recordings have limited practical scenarios.
On the other hand, most existing video quality assessment works
mainly focus on the objective quality loss after compression, encod-
ing or transmission [24, 30, 32, 44], while few pay attention to the
subjective sense of viewers caused by the content of videos. There-
fore, it is imperative to develop a system from a human-centered
perspective to help novices in editing meeting recordings.

In this paper, we implement a human-centered video content
flaw detection system to detect flaws in meeting recordings, named
FLAD. As shown in Figure 1, the proposed FLAD system pays at-
tention to the three most common video content flaws mentioned

43

https://doi.org/10.1145/3534088.3534349
https://doi.org/10.1145/3534088.3534349

Figure 1: Illustration of Three Common Video Content Flaws

by professional video editors: (1) blurriness: the focus point of
the camera usually changes from one speaker to another, causing
blurriness in the video during the procedure; (2) jitter: the camera
usually needs to be moved by the photographer, which might re-
main jitters in the video; (3) occlusion: the cameras are inevitably
occluded by some objects or persons that pass through the cameras.
The major contributions of this paper can be concluded as follows,

• We propose three video flaw detection algorithms to detect
blurriness, jitter, and occlusion respectively from the per-
spective of human-centered computing.

• We build a testbed to evaluate the proposed algorithms. The
experimental results demonstrate that the three proposed al-
gorithms could achieve state-of-the-art (SOTA) performance.

• We integrate the three proposed flaw detection algorithms
to build a human-centered flaw detection system, named
FLAD, which could effectively visualize the detected flaws.

2 RELATEDWORK
Automatic/semi-automatic video editing systems. For auto-
matic video editing of meeting recordings, Lefevre et al. [17] pro-
posed an automatic video stream selection method based on the
detection of the light state change of the microphones to track the
speaker. Intuitively, this method cannot work if the used micro-
phones do not have an indicator light. Ranjan et al. [29] imple-
mented an automated meeting capture system to capture videos
of small group meetings. This system introduced a lot of sensors
such as infrared cameras and the Vicon motion tracking system1,
which is hard to be deployed in normal conference venues. Liu
et al. [19] settled three cameras in the lecture room and proposed
a virtual video director based on a finite state machine (FSM) to
manage the cameras, which also depends on the pre-defined layout
and principles. Therefore, the existing automatic/semi-automatic
methods are not mature enough to deal with practical applications.

Video quality assessment approaches. In recent years, lots of
researchers have contributed works about video quality assessment.
For example, Staelens et al. [32] provided information on how to
model and measure the perceived video quality of end-users by
leveraging fundamental and pure network measurements. Rassool
et al. [30] proposed VideoMulti-method Assessment Fusion (VMAF)
which estimates the perceived quality by computing scores from
multiple quality assessment algorithms and fusing them using a
support vector machine (SVM). Min et al. [24] conduct a subjective
study of audio and video (A/V) quality and validated and tested
objective A/V quality prediction models on their proposed database.
However, the existing methods mainly focus on the video quality

1https://www.vicon.com/

after compression, encoding, or transmission, while do not consider
the quality of content from a human-centered perspective.

Video content flaw detection algorithms. (1) Blurriness de-
tection: The existing methods pay attention to the blur degree
estimation of videos after encoding, but they further focus on the
global quality rather than extracting specific frames of the videos [3,
28]. (2) Jitter detection: Currently, there are some automatic/semi-
automatic video editing systems that integrate the jitter detection al-
gorithms [38, 40], while other jitter detection algorithms mainly fall
into some specific areas, such as videos from the satellite [20, 35, 41].
(3) Occlusion detection: The occlusion detection algorithms play
an important role in many computer vision applications, e.g. video
tracking [8, 13, 14, 43], optical flow estimation [11, 12, 33, 42], and
pedestrian detection [23, 25, 26, 45]. The most relevant study is
proposed by Liao et al. [18], which builds a large-scale database for
occlusion detection and proposes a benchmark that will be applied
to evaluate the performance of our proposed model.

3 SYSTEM DESIGN
The workflow of the proposed FLAD system is shown in Figure 2,
in which a sliding window would extract 8 frames and send them to
the FLAD to three common flaws in real shooting scenes (blurriness,
jitter, and occlusion) and then generate a visualization report for
editors. The following subsections will describe each module in
detail. Note that, we use𝑉 = {𝑓1, 𝑓2, ..., 𝑓𝑛} to denote an input video
with totally 𝑛 frames, and 𝑓𝑖 represents the 𝑖𝑡ℎ frame of the video.

3.1 Blurriness Detection
The representation of out-of-focus is blurriness in videos, and a
typical feature is that there are little edges in these frames, which
inspires many significant methods [1, 28]. However, the existing
blurriness detection method only sets a constant value as the thresh-
old, which cannot perform well for videos that are recorded by
different shooting equipment. For example, all frames of the video

Algorithm 1: Blurriness Detection Algorithm
Input: Video 𝑉 = {𝑓1, 𝑓2, ..., 𝑓𝑛}, parameter 𝜃 , 𝑘
Output: Frames with blurriness 𝐵

1 Init: Detected blurriness frame array 𝐵, Laplacian map array
𝐿, variance array of Laplacian map 𝜈

2 for 𝑖 = 1 to 𝑖 = 𝑛 do
3 𝐿𝑖 = Laplacian_map(𝑓𝑖);
4 𝜈𝑖 = Variance(𝐿𝑖);
5 end
6 𝑆𝐷 (𝜈) = Standard_deviation(𝜈);
7 if 𝑆𝐷 (𝜈) > 𝜃 then
8 𝑡 = mean(𝜈) - (mean(𝜈) - min(𝜈)) / 𝑘 ;
9 for 𝑖 = 1 to 𝑖 = 𝑛 do
10 if 𝜈𝑖 < 𝑡 then
11 𝐵.append(𝑓𝑖);
12 end
13 end
14 end
15 return 𝐵;

44

Figure 2: The Flowchart of FLAD System

with poor quality shooting equipment might be misrecognized by
the method with an unsuitable constant threshold.

In the FLAD system, we modified a simple but sound blurriness
detection method based on the Laplacian operator [28], as shown
in Algorithm 1. We first calculate the second derivative of an image
to represent the number of its edges, so the Laplacian operator is
applied on each frame 𝑓𝑖 and outputs their Laplacian map as 𝐿 =

{𝐿1, 𝐿2, ..., 𝐿𝑛}. Then we calculate the variance of each Laplacian
map as 𝜈 = {𝜈1, 𝜈2, ..., 𝜈𝑛}, where 𝜈𝑖 could represent the number of
edges in frame 𝑓𝑖 . Intuitively, if the frame 𝑓𝑖 is a blur frame, the
𝜈𝑖 would get a lower value. Then we will calculate the standard
deviation of the 𝜈 , represented by 𝑆𝐷 (𝜈) to evaluate the average
degree of blurriness. If the standard deviation 𝑆𝐷 (𝜈) is larger than
𝜃 = 1000, we consider the video has an unbalanced clarity and then
we will search out the blurriness. The frame would be regarded as a
blur frame if its number of edges is lower than a dynamic threshold:
𝜈𝑖 < 𝜈 − (𝜈 − 𝜈𝑚𝑖𝑛)/𝑘, 𝑖 = 1, ..., 𝑛, where 𝜈 denotes the mean of
variance array 𝜈 , 𝜈𝑚𝑖𝑛 is the minimum of 𝜈 , and 𝑘 is a coefficient
and set as 3. The motivation of this algorithm is to utilize the global
degree of blurriness for judgment instead of a fixed threshold.

3.2 Jitter Detection
In complicated shooting environment, the camera might be shaken
and remain jitters in final recordings. However, the jitter is hard to
be defined since there are many normal camera moves that might
confuse the detection algorithms. Our preliminary experiments
show that the existing jitter detection methods [38, 40] cannot well
solve the jitter detection since they would falsely regard all camera
moves as jitters. In this paper, we design a novel jitter detection
algorithm based on an intuitive observation that normal consecutive
frames should not move toward different directions in a short time
slot (e.g., left then right). Algorithm 2 shows the pseudocode.

As shown in the flowchart of Figure 2, the sliding window would
extract frames and send them for detection. Our algorithm first cal-
culates the move direction of extracted frames. So the homography

transformation matrix is calculated using SIFT features[22] and
RANSAC regression[5] for consecutive frames as 𝐻 . Each video
frame is split into 4 equal parts from the middle, and the 4 pivots
of which are selected as anchor points 𝑃 . The 4 anchor points are
used to measure whether the camera is moving. For example, if
only 1/4 of anchor points have a shift, it might be a person who is
walking while the camera does not move. Using the matrix 𝐻 , we
can calculate the mapping of anchor points as 𝑃 ′ to estimate the
Manhattan distance between 𝑃 and 𝑃 ′ . If more than 1 anchor points
have a shift distance larger than a predefined distance 𝑑𝑖𝑠 (set as

Algorithm 2: Jitter Detection Algorithm
Input: Frames 𝑓 = {𝑓𝑘 , 𝑓𝑘+1, ..., 𝑓𝑘+7}
Output: Whether the input frames 𝑓 are jitters

1 Init: Direction array 𝐷 [7], anchor points 𝑃 [4],𝑃 ′[4]
2 Resize all frames of 𝑓 to (480 × 270);
3 for 𝑖 = 0 to 𝑖 = 7 do
4 Calculate homography transformation matrix 𝐻 using

SIFT features of 𝑓𝑘+𝑖 and 𝑓𝑘+𝑖+1;
5 Calculate the mapping 𝑃 ′ of 𝑃 using 𝐻 ;
6 if More than 1/4𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑃 ′) > 𝑑𝑖𝑠 then
7 Calculate the moving direction as 𝐷𝑘+𝑖 ;
8 end
9 else
10 𝐷𝑘+𝑖 = 0;
11 end
12 end
13 for 𝑖 = 0 to 𝑖 = 7 do
14 if 𝐷𝑘+𝑖 ≠ 𝐷𝑘+𝑖+1 and 𝐷𝑘+𝑖 , 𝐷𝑘+𝑖+1 ≠ 0 then
15 return True;
16 end
17 end
18 return False;

45

0.7), we believe the camera is moving. We define 4 directions (up,
down, left, right) in axis directions, then we calculate the moving
direction 𝐷𝑘+𝑖 if the 4 anchor points have the same moving direc-
tion, otherwise, we set 𝐷𝑘+𝑖 = 0. Then the algorithm will search
for jitters from the array 𝐷 . If 2 consecutive frames move toward
different directions, we believe the input frames have jitters.

3.3 Occlusion Detection
The occlusion detection is relatively complex since the definition of
occlusion does not have a consensus in different research areas. In
video editing of meeting recordings, we regard the objects that ap-
pear at the improper time as occlusions, e.g., the objects that occlude
the speakers. This task is highly suitable for the deep learning-based
algorithm because it requires a semantic understanding of content.

In the FLAD system, we design a deep neural network model as
shown in Table 1, which is a binary classification network (to clas-
sify whether the frame has occlusion). In this table, except for the
special notes, all layers are convolutional layers with zero padding.
For the input layer, 8 consecutive frames from the sliding window
are resized as 8 × 171 × 128 × 3 as the input tensor. In each convo-
lutional layer block, there are two branches of the network which

Table 1: Occlusion Detection Neural Network Model

Stage Parameters

Conv1 32, 3 × 3 × 3, (1, 1, 1)
Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv2

32, 1 × 1 × 1, (0, 0, 0) 32, 1 × 1 × 1, (0, 0, 0)
64, 1 × 3 × 3, (0, 1, 1) 64, 3 × 1 × 1, (1, 0, 0)
64, 1 × 1 × 1, (0, 0, 0) 64, 1 × 1 × 1, (0, 0, 0)
Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv3

64, 1 × 1 × 1, (0, 0, 0) 64, 1 × 1 × 1, (0, 0, 0)
128, 1 × 3 × 3, (0, 1, 1) 128, 3 × 1 × 1, (1, 0, 0)
128, 1 × 1 × 1, (0, 0, 0) 128, 1 × 1 × 1, (0, 0, 0)

Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv4

128, 1 × 1 × 1, (0, 0, 0) 128, 1 × 1 × 1, (0, 0, 0)
256, 1 × 3 × 3, (0, 1, 1) 256, 3 × 1 × 1, (1, 0, 0)
256, 1 × 1 × 1, (0, 0, 0) 256, 1 × 1 × 1, (0, 0, 0)

Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv5

256, 1 × 1 × 1, (0, 0, 0) 256, 1 × 1 × 1, (0, 0, 0)
512, 1 × 3 × 3, (0, 1, 1) 512, 3 × 1 × 1, (1, 0, 0)
512, 1 × 1 × 1, (0, 0, 0) 512, 1 × 1 × 1, (0, 0, 0)

Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv6

512, 1 × 1 × 1, (0, 0, 0) 512, 1 × 1 × 1, (0, 0, 0)
1024, 1 × 3 × 3, (0, 1, 1) 1024, 3 × 1 × 1, (1, 0, 0)
1024, 1 × 1 × 1, (0, 0, 0) 1024, 1 × 1 × 1, (0, 0, 0)

Max Pool 3D 1 × 2 × 2 with Stride (1,2,2)

Conv7

1024, 1 × 1 × 1, (0, 0, 0) 1024, 1 × 1 × 1, (0, 0, 0)
2048, 1 × 3 × 3, (0, 1, 1) 2048, 3 × 1 × 1, (1, 0, 0)
2048, 1 × 1 × 1, (0, 0, 0) 2048, 1 × 1 × 1, (0, 0, 0)

Global Max Pool 2D

FC

Fully Connected 8 × 2048
Fully Connected 8 × 1024, Dropout 0.5
Fully Connected 8 × 512, Dropout 0.5
Fully Connected 8 × 2 and Softmax

divide the 3D convolution as a 1D+2D paradigm, and the features
would be added before the max-pooling layer to combine the infor-
mation. The loss function, which is demonstrated to be effective in
occlusion detection [18], is applied in the training process.

3.4 Detection Results Visualization
After the flaw detection, a Web-based report with an intuitive in-
terface would be generated to visualize the detection results, as
shown in Figure 2. The report provides three timelines with differ-
ent colors to display detected flaws, and the fluctuations of each
timeline straightly present the confidence of flaws in each second.
For example, in the screenshot of Figure 2, the dialogue of the front
two persons occluded the major speaker, so the series of frames is
detected as occlusion and there is a ridge in the blue timeline. At
the same time, since the camera is focusing on the major speaker,
the front two persons show an obvious blurriness, which was also
accurately detected as shown in the red timeline. On the other side,
the panel “Timestamps” allows video editors to jump and check
the specific duration. With this module, the FLAD could efficiently
help video editors in flaw detection for meeting recordings.

4 EXPERIMENTS
4.1 Testbed
For the evaluation of the proposed algorithms, we totally collect
8 meeting recordings with different scenarios and quality (reso-
lution of 1280 × 720) from YouTube. Some sample frames of the
testbed are shown in Figure 3. Then we invited a professional video
editor with 8 years of experience to carefully check the video ma-
terials. All the content flaws (blurriness, jitter, and occlusion) of
the collected videos were annotated by the professional video edi-
tor second by second, which could be regarded as the baseline for

Figure 3: Sample Frames of Testbed

Table 2: Details of Video Content Flaw Testbed

Video No. Scenario Length Blu. Jit. Occ.

Video 1 Academic Report 14:44 4 4 12
Video 2 Tutorial 08:54 2 6 4
Video 3 Project Meeting 09:01 0 1 7
Video 4 Award Ceremony 14:44 1 8 0
Video 5 Annual Meeting 13:36 0 2 3
Video 6 Academic Report 05:33 0 1 2
Video 7 Academic Conference 13:37 0 7 8
Video 8 Press Conference 05:13 0 6 0

46

further experiments. The detailed information about the dataset
could be found in Table 2, in which we present the numbers of
blurriness (Blu.), jitter (Jit.), and occlusion (Occ.) annotated by the
professional video editor. For comparison, we also conduct a user
study, in which totally 7 novices who are not familiar with video
editing are recruited to point out the video content flaws second
by second where they fill discomfort. This testbed will be open-
sourced at https://www.kaggle.com/datasets/seaxiaod/flad-video-
flaw-detection to support the related studies.

4.2 Implementation Details
The FLAD system is deployed on a server with 6 processors (Intel
Core i7-7700 @ 3.60GHz) and 16GB RAM, which is equipped with
an NVIDIA GTX 1080Ti GPU (11GB). The deep neural network
model of occlusion detection is implemented using PyTorch [27]. A
large dataset for occlusion detection [18] is utilized in the training
of the neural network model, which contains 1,000 video segments
where the appeared occlusions are annotated frame by frame. In the
training process, the Stochastic Gradient Descent (SGD) is applied
with 0.9 momentum and 0.0005 weight decay. The learning rate
is initialized as 0.0001 with a learning rate decay of 0.5 every 10
epochs. And the degree of penalty 𝜆 in the loss function is set as
10. The whole training process contains 50 epochs.

4.3 Human-centered Evaluation Metrics
For the evaluation, we first evaluate how many annotated flaws
are detected, denoted by 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. The classic action detection or
recognition tasks apply frame-level evaluation, but, from a human-
centered perspective, the event-level evaluation is more reasonable
since the human sense cannot be accurate to frame-level detection.
Therefore, we consider the flaw is detected if there is an overlap
between the annotation from the professional video editor and
the experimental detection result from algorithms or novices. On
the other hand, the higher 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 usually brings higher false
positive results, so we use the duration of misrecognized flaws
detected by each algorithm and novices to divide the total length of
the video as the false positive ratio, represented as 𝐹𝑃𝑅. The 𝐹𝑃𝑅
could be regarded as the additional workload that the users of the
FLAD system need to check whether there is a flaw.

5 RESULTS
5.1 Comparison with Existing Algorithms
5.1.1 Blurriness Detection. Existing blurriness detection methods
[1, 28] would set a fixed threshold, while the proposed algorithm
can dynamically adjust the threshold using the global information,

Figure 4: Comparison of Blurriness Detection Algorithms

so the evaluation mainly focuses on its effectiveness. We imple-
mented the most classic blurriness detection method based on the
Laplacian operator as the baseline [28], in which we change its
predefined threshold from 500 to 3500 with an interval of 500. Note
that more clear images will show a higher variance of the Laplacian
map, so the higher threshold is more sensitive to blurriness. The
comparative results are illustrated in Figure 4. As shown in this fig-
ure, if the threshold is set as 500, the baseline method cannot detect
any blurriness. With the growth of the threshold, the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
shows a significant increase, while the 𝐹𝑃𝑅 also grows fast accord-
ingly. Specifically, when the threshold is set as 2500, the baseline
method and the FLAD system share the same 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 which is
larger than 0.9, but the 𝐹𝑃𝑅 of the FLAD system is obviously lower
than the baseline method. The experimental results demonstrate
that the proposed blurriness detection algorithm can achieve better
performance in detection and effectively maintain a low 𝐹𝑃𝑅.

5.1.2 Jitter Detection. To evaluate the performance of the proposed
jitter detection algorithm, we introduce two SOTA jitter detection
methods for comparison, including QuickCut [38] and Write-A-
Video [40], which mainly evaluate the acceleration of video content
to determinewhether the camera is shaking. The comparison results
of different jitter detection algorithms are shown in Figure 5.We can
find that although the two comparative methods may detect more
jitters in some specific videos, the proposed FLAD system can reach
a higher average 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. It is worth noting that, for video 3,
there is a jitter annotated by the professional video editor, but none
of the three algorithms could search out it. On the other hand, the
FLAD system also has better control over the 𝐹𝑃𝑅. Therefore, the
proposed jitter detection method could achieve SOTA performance.

Figure 5: Comparison of Jitter Detection Algorithms

5.1.3 Occlusion Detection. For evaluating the occlusion detection
model, we apply frame-level binary classification accuracy, receiver
operating characteristic (ROC) curve with area under the curve

Figure 6: ROC Curves of Occlusion Detection

47

https://www.kaggle.com/datasets/seaxiaod/flad-video-flaw-detection
https://www.kaggle.com/datasets/seaxiaod/flad-video-flaw-detection

Table 3: Results of Flaw Detection Compared with Novices

Blurriness Jitter Occlusion
Video No. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑃𝑅 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑃𝑅 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑃𝑅

Novices FLAD Novices FLAD Novices FLAD Novices FLAD Novices FLAD Novices FLAD
Video1 0.2143 0.7500 0.0008 0.1379 0.2500 0.5000 0.0034 0.0045 0.5714 0.5833 0.0111 0.0701
Video2 0.1429 1.0000 0.0027 0.4682 0.2381 0.5000 0.0067 0.0056 0.3571 1.0000 0.0088 0.4270
Video3 - - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4694 1.0000 0.0783 0.1070
Video4 0.7143 1.0000 0.0034 0.0590 0.4286 1.0000 0.0352 0.1206 - - 0.0000 0.1314
Video5 - - 0.0019 0.4301 0.1429 1.0000 0.0004 0.0012 0.5714 0.6667 0.0033 0.1801
Video6 - - 0.0000 0.0000 0.8571 1.0000 0.0016 0.0000 0.8571 1.0000 0.0053 0.9626
Video7 - - 0.0005 0.0000 0.0816 0.0000 0.0014 0.0012 0.6429 1.0000 0.0051 0.0623
Video8 - - 0.0009 0.0000 0.2857 0.5000 0.0409 0.0215 - - 0.0000 0.0585
Average 0.3572 0.9167 0.0013 0.1369 0.2855 0.5625 0.0112 0.0193 0.5782 0.8750 0.0140 0.2499

Table 4: Experimental Results of Occlusion Detection

Method Parameters Accuracy FPS

ResNet-101[7] 42.5M 0.6106 83
VGG-19[31] 139.59M 0.6885 70

DenseNet-169[10] 12.49M 0.6556 95
Hou et al.[9] 23.51M 0.4266 60
R(2+1)D[37] 33.18M 0.5910 99
C3D[36] 107.36M 0.7839 109

Liao et al.[18] 59.64M 0.8270 106
FLAD 50.17M 0.8557 126

(AUC), and frame per second (FPS) as evaluation metrics. The exper-
iments are conducted in the occlusion detection dataset built by Liao
et al. [18] with the same experimental settings as the benchmark.
Since only minor studies focus on the video occlusion detection,
regardless of four SOTA occlusion detection methods (Liao et al.
[18], Hou et al. [9], R(2+1)D [37], C3D [36]), three most represen-
tative deep neural network models (ResNet-101 [7], VGG-19 [31],
DenseNet-169 [10]) are also included as comparative methods.

The numbers of parameters and classification accuracy of dif-
ferent methods are shown in Table 4. As shown in this table, the
model of the FLAD system could obtain the highest classification
accuracy and FPS on this dataset, while the number of parameters
is only 50.17M which is less than the model of the SOTA method
(Liao et al. [18]). Moreover, the ROC curves with AUC values are
illustrated in Figure 6. We can find that the model of the FLAD sys-
tem has better AUC values (0.93) compared with other models. The
experimental results illustrate the proposed FLAD system could
achieve the SOTA performance in video occlusion detection.

5.2 Comparison with Novices
Compared with the existing methods, the FLAD system could
achieve SOTA in the detection of the three video flaws, then we
evaluate whether the FLAD could achieve higher detection ability
compared with novices in the proposed testbed. The detailed exper-
imental results are illustrated in Table 3, in which the notation ‘-’
denotes the videos are not annotated with blurriness or occlusion

by the professional video editor. Note that, for novices, the average
values of their experimental results are utilized in comparison.

(1) Blurriness detection: The FLAD has a significantly higher
average 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 compared with novices, which is higher than
0.9. On the contrary, the novices have better control over the 𝐹𝑃𝑅,
especially in video 2 and video 5. (2) Jitter detection: As shown in
Table 3, the FLAD could achieve a 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 of 0.5625, while the
novices only have 0.2855, which is about half of the FLAD system.
On the other hand, although the novices have better control over
𝐹𝑃𝑅, the 𝐹𝑃𝑅 of the FLAD system is very close to the novices. In
fact, the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 of 0.5625 also shows there are still possibilities
for improvement. (3) Occlusion detection: The FLAD also shows
a higher 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 compared with novices, which is close to 0.9,
but the 𝐹𝑃𝑅 of FLAD is also higher than novices. In fact, the criteria
or user acceptance are highly different for different people, but the
experimental results could illustrate that, from the criteria of the
professional editor, the FLAD is more sensitive to video flaws.

6 CONCLUSIONS
In this paper, we proposed a human-centered video content flaw de-
tection system for meeting recordings, named FLAD, which builds
a bridge between subjective sense and objective measures to assess
the video quality. Specifically, we introduce three algorithms to de-
tect the three most common flaws during the shooting of meeting
recordings, containing blurriness, jitter, and occlusion. Afterward,
the FLAD system would generate a visualization report for helping
video editors fast locate the detected flaws. The experimental re-
sults illustrate that the proposed three algorithms can achieve SOTA
performance compared with the existing approaches. And the pro-
posed FLAD system also shows higher 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 compared with
novices, which means the FLAD system can effectively help video
editors detect flaws in meeting recordings. In the future, we will
keep improving the performance of proposed algorithms and en-
large the scalability of the FLAD system from the human-centered
perspective, e.g. by extending more flaw detection modules.

ACKNOWLEDGMENTS
This work is supported by Project 61902333 by National Natural
Science Foundation of China.

48

REFERENCES
[1] Usman Ali and Muhammad Tariq Mahmood. 2018. Analysis of blur measure

operators for single image blur segmentation. Applied Sciences 8, 5 (2018), 807.
[2] Ido Arev, Hyun Soo Park, Yaser Sheikh, Jessica Hodgins, and Ariel Shamir. 2014.

Automatic editing of footage from multiple social cameras. ACM Transactions on
Graphics 33, 4 (2014), 1–11.

[3] Raghav Bansal, Gaurav Raj, and Tanupriya Choudhury. 2016. Blur image detection
using Laplacian operator and Open-CV. In 2016 International Conference System
Modeling & Advancement in Research Trends (SMART). IEEE, 63–67.

[4] Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and Bjoern
Hartmann. 2013. Democut: generating concise instructional videos for physi-
cal demonstrations. In Proceedings of the 26th annual ACM symposium on User
interface software and technology. 141–150.

[5] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[6] Andreas Girgensohn, John Boreczky, Patrick Chiu, John Doherty, Jonathan Foote,
Gene Golovchinsky, Shingo Uchihashi, and LynnWilcox. 2000. A semi-automatic
approach to home video editing. In Proceedings of the 13th annual ACM symposium
on User interface software and technology. 81–89.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[8] Zhibin Hong, Chaohui Wang, Xue Mei, Danil Prokhorov, and Dacheng Tao. 2014.
Tracking using multilevel quantizations. In European Conference on Computer
Vision. Springer, 155–171.

[9] Ruibing Hou, Bingpeng Ma, Hong Chang, Xinqian Gu, Shiguang Shan, and Xilin
Chen. 2019. Vrstc: Occlusion-free video person re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7183–7192.

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[11] Junhwa Hur and Stefan Roth. 2017. MirrorFlow: Exploiting symmetries in joint
optical flow and occlusion estimation. In Proceedings of the IEEE International
Conference on Computer Vision. 312–321.

[12] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas Brox. 2018. Occlusions,
motion and depth boundaries with a generic network for disparity, optical flow
or scene flow estimation. In Proceedings of the European Conference on Computer
Vision (ECCV). 614–630.

[13] Saad M Khan and Mubarak Shah. 2008. Tracking multiple occluding people by
localizing on multiple scene planes. IEEE transactions on pattern analysis and
machine intelligence 31, 3 (2008), 505–519.

[14] Dieter Koller, Joseph Weber, and Jitendra Malik. 1994. Robust multiple car
tracking with occlusion reasoning. In European conference on computer vision.
Springer, 189–196.

[15] Rodrigo Laiola Guimaraes, Pablo Cesar, Dick CA Bulterman, Vilmos Zsom-
bori, and Ian Kegel. 2011. Creating personalized memories from social events:
community-based support for multi-camera recordings of school concerts. In
Proceedings of the 19th ACM international conference on Multimedia. 303–312.

[16] Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala. 2017. Compu-
tational video editing for dialogue-driven scenes. ACM Transactions on Graphics
36, 4 (2017), 130–1.

[17] Florent Lefevre, Vincent Bombardier, Nicolas Krommenacker, Patrick Charpentier,
and Bertrand Petat. 2018. Automatic video stream selection method by on-air
microphone detection.

[18] Junhua Liao, Haihan Duan, Xin Li, Haoran Xu, Yanbing Yang, Wei Cai, Yanru
Chen, and Liangyin Chen. 2020. Occlusion Detection for Automatic Video Editing.
In Proceedings of the 28th ACM International Conference on Multimedia. 2255–
2263.

[19] Qiong Liu, Yong Rui, Anoop Gupta, and Jonathan J Cadiz. 2001. Automating
camera management for lecture room environments. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 442–449.

[20] Shijie Liu, Xiaohua Tong, Fengxiang Wang, Wenzheng Sun, Chengcheng Guo,
Zhen Ye, Yanmin Jin, Huan Xie, and Peng Chen. 2016. Attitude jitter detection
based on remotely sensed images and dense ground controls: A case study for
Chinese ZY-3 satellite. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 9, 12 (2016), 5760–5766.

[21] A Chris Long, Brad Myers, Juan Casares, Scott Stevens, and Albert Corbett. 2004.
Video Editing Using Lenses and Semantic Zooming. (2004).

[22] David G Lowe. 1999. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision, Vol. 2.
IEEE, 1150–1157.

[23] Markus Mathias, Rodrigo Benenson, Radu Timofte, and Luc Van Gool. 2013. Han-
dling occlusions with franken-classifiers. In Proceedings of the IEEE International
Conference on Computer Vision. 1505–1512.

[24] XiongkuoMin, Guangtao Zhai, Jiantao Zhou, Mylene CQ Farias, and Alan Conrad
Bovik. 2020. Study of subjective and objective quality assessment of audio-visual
signals. IEEE Transactions on Image Processing 29 (2020), 6054–6068.

[25] Wanli Ouyang and Xiaogang Wang. 2012. A discriminative deep model for pedes-
trian detection with occlusion handling. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 3258–3265.

[26] Wanli Ouyang and Xiaogang Wang. 2013. Joint deep learning for pedestrian
detection. In Proceedings of the IEEE international conference on computer vision.
2056–2063.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems. 8026–8037.

[28] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús Chamorro-Martinez, and Joaquín
Fernández-Valdivia. 2000. Diatom autofocusing in brightfield microscopy: a com-
parative study. In Proceedings 15th International Conference on Pattern Recognition,
Vol. 3. IEEE, 314–317.

[29] Abhishek Ranjan, Jeremy Birnholtz, and Ravin Balakrishnan. 2008. Improving
meeting capture by applying television production principles with audio and
motion detection. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 227–236.

[30] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video
quality metric. In 2017 IEEE international symposium on broadband multimedia
systems and broadcasting. IEEE, 1–2.

[31] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[32] Nicolas Staelens, Margaret H Pinson, Philip Corriveau, Filip De Turck, and Piet
Demeester. 2015. Measuring video quality in the network: from quality of ser-
vice to user experience. In 9th International Workshop on Video Processing and
Consumer Electronics. 5–6.

[33] Patrik Sundberg, Thomas Brox, Michael Maire, Pablo Arbeláez, and Jitendra
Malik. 2011. Occlusion boundary detection and figure/ground assignment from
optical flow. In CVPR 2011. IEEE, 2233–2240.

[34] Yoshinao Takemae, Kazuhiro Otsuka, and Naoki Mukawa. 2003. Video cut editing
rule based on participants’ gaze in multiparty conversation. In Proceedings of the
eleventh ACM international conference on Multimedia. 303–306.

[35] Xiaohua Tong, Zhen Ye, Yusheng Xu, Xinming Tang, Shijie Liu, Lingyun Li, Huan
Xie, Fengxiang Wang, Tianpeng Li, and Zhonghua Hong. 2014. Framework of
jitter detection and compensation for high resolution satellites. Remote Sensing
6, 5 (2014), 3944–3964.

[36] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision. 4489–4497.

[37] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
6450–6459.

[38] Anh Truong, Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2016.
Quickcut: An interactive tool for editing narrated video. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology. 497–507.

[39] Shuhei Tsuchida, Satoru Fukayama, and Masataka Goto. 2017. Automatic sys-
tem for editing dance videos recorded using multiple cameras. In International
Conference on Advances in Computer Entertainment. Springer, 671–688.

[40] Miao Wang, Guo-Wei Yang, Shi-Min Hu, Shing-Tung Yau, and Ariel Shamir.
2019. Write-a-video: computational video montage from themed text. ACM
Transactions on Graphics 38, 6 (2019), 1–13.

[41] Mi Wang, Ying Zhu, Jun Pan, Bo Yang, and Quansheng Zhu. 2016. Satellite jitter
detection and compensation using multispectral imagery. Remote Sensing Letters
7, 6 (2016), 513–522.

[42] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. 2018.
Occlusion aware unsupervised learning of optical flow. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4884–4893.

[43] Alper Yilmaz, Xin Li, and Mubarak Shah. 2004. Contour-based object tracking
with occlusion handling in video acquired using mobile cameras. IEEE Transac-
tions on pattern analysis and machine intelligence 26, 11 (2004), 1531–1536.

[44] Yingxue Zhang, Yingbin Wang, Feiyang Liu, Zizheng Liu, Yiming Li, Daiqin Yang,
and Zhenzhong Chen. 2018. Subjective panoramic video quality assessment
database for coding applications. IEEE Transactions on Broadcasting 64, 2 (2018),
461–473.

[45] Chunluan Zhou and Junsong Yuan. 2018. Bi-box regression for pedestrian de-
tection and occlusion estimation. In Proceedings of the European Conference on
Computer Vision (ECCV). 135–151.

[46] Vilmos Zsombori, Michael Frantzis, Rodrigo Laiola Guimaraes, Marian Florin
Ursu, Pablo Cesar, Ian Kegel, Roland Craigie, and Dick CA Bulterman. 2011.
Automatic generation of video narratives from shared UGC. In Proceedings of the
22nd ACM conference on Hypertext and hypermedia. 325–334.

49

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Blurriness Detection
	3.2 Jitter Detection
	3.3 Occlusion Detection
	3.4 Detection Results Visualization

	4 Experiments
	4.1 Testbed
	4.2 Implementation Details
	4.3 Human-centered Evaluation Metrics

	5 Results
	5.1 Comparison with Existing Algorithms
	5.2 Comparison with Novices

	6 Conclusions
	Acknowledgments
	References

