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Abstract—In the digital age, data has become an invaluable
asset for decision-making across various industries. Accurate
data valuation is essential for businesses to effectively leverage
their data assets, optimize strategies, and enhance operational
efficiencies. This paper discusses the complex challenges inherent
in data valuation methods, focusing on issues of data provenance
and the lack of standardized valuation metrics. Moreover, the
Internet of Things (IoT) further complicates this landscape by
generating vast volumes of real-time data, which requires robust
evaluation frameworks. Blockchain technology, with its decen-
tralized and tamper-resistant characteristics, offers promising
solutions by ensuring data integrity and traceability. Additionally,
smart contracts enable automated and reliable execution of data
transactions, reinforcing trust in the data exchange process. Tech-
nically, the integration of wireless sensing technology and edge
computing facilitates real-time data collection and processing,
improving the accuracy and timeliness of data valuation, and
machine learning (ML) techniques further enhance these efforts
by uncovering patterns and relationships within large datasets.
This study explores how these advanced technologies can address
the limitations of existing data valuation methods, paving the way
for a more transparent, secure, and efficient data marketplace.

Index Terms—Data Valuation, Pricing, Internet of Things,
Blockchain

I. INTRODUCTION

In the digital age, data has become a pivotal asset driv-
ing decision-making processes across various industries. The
ability to accurately assess data is crucial for businesses to
effectively utilize their data assets and cultivate a dynamic
data marketplace. In the realm of data-driven innovation, data
valuation—the process of assessing and quantifying the value
of data—has emerged as a critical area of focus, which is
especially important in the Internet of Things (IoT), since vast
volumes of data generated by IoT devices can significantly en-
hance system intelligence and automation. Moreover, accurate
data valuation can help organizations optimize resource allo-
cation, improve data utilization efficiency, and drive innovative
applications. However, the effective valuation and management
of the data remain challenging in the current stage [1], [2].

Existing research in data valuation is varied and fragmented,
encompassing economic models for market valuation and
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algorithms for quality and contribution assessment. Therefore,
there is a notable gap in comprehensive analyses specific to
IoT, despite the existing literature reviews, particularly in how
data valuation integrates with technologies like blockchain,
wireless sensing, machine learning (ML), and edge computing.

Beyond IoT, these insights into data valuation are relevant
across healthcare, finance, and smart cities, where data-driven
decision-making is paramount. Healthcare organizations can
use robust data valuation frameworks to optimize patient
outcomes, while financial institutions refine risk management
by leveraging more precise data assessments. Similarly, smart
city infrastructure can benefit from real-time data valuation
to enhance public services and resource management, while
sectors like retail and manufacturing can leverage data to
improve supply chains and customer experiences.

Existing surveys, such as those conducted by Sen et al.
[1] and Liang et al. [2], have summarized various aspects of
data valuation but exhibit significant and notable limitations.
They fail to discuss the unique characteristics and challenges
of IoT data, lack a unified framework for IoT data valuation,
and do not exhaustively examine how different IoT technolo-
gies interact with data valuation. Furthermore, these surveys
overlook the dynamic nature of IoT environments where data
is generated, processed, and utilized in real-time applications.

Our paper aims to bridge these gaps by providing a com-
prehensive review of current data valuation research, with a
specific focus on IoT. We meticulously analyze the key and
evolving roles of blockchain, wireless sensing, ML, and edge
computing in IoT data valuation. Our contributions include: (1)
a thorough review of existing data valuation research, with a
special emphasis on its application in IoT; (2) an in-depth ex-
amination of the interplay between different IoT technologies
and data valuation that provides a nuanced understanding of
their roles and potential; and (3) the identification of research
gaps and directions for future work, aiming to foster a deeper
understanding and advance IoT data valuation. In the following
sections, we present our analytical framework as shown in Fig.
1, which outlines the interconnections between IoT technolo-
gies and data valuation. By offering this comprehensive review,
we aim to provide valuable references for both academic
and industrial sectors, fostering the advancement of IoT data
valuation and paving the way for future research.
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Fig. 1. Framework of Data Valuation and Prcing in IoT

II. RELATED WORK

In recent years, the rise of large language models (LLMs)
has highlighted the significance of data valuation, attracting
considerable attention from the academic community. Various
studies have explored aspects of data pricing and valuation
across diverse domains. This paper categorizes these studies
into foundational pricing strategies, valuation methods and
applications, and emerging market pricing.

In 2013, Sen et al. [1] conducted an early survey exam-
ining several broadband pricing proposals, both static and
dynamic, analyzing their implementation in consumer data
plans worldwide. This foundational study provided a compre-
hensive overview of existing strategies, laying the groundwork
for subsequent research. However, it primarily focused on
consumer data plans and did not explore the complexities of
data valuation in advanced data markets involving large-scale
analytics or ML applications. Liang et al. [2] explored major
concepts related to big data pricing, including digital commod-
ity pricing principles and data market structures. Their survey
encompassed economic-based and game theory-based models
but did not discuss emerging technologies like blockchain,
which could revolutionize data pricing through decentralized
mechanisms. Gizelis et al. [3] conducted a comprehensive
survey of pricing schemes, categorizing them into demand-
based, quality-of-service (QoS)-based, resource-based, and dy-
namic pricing. Their analysis highlighted challenges related to
fairness and technical implementation, but did not investigate
the broader implications for large-scale data markets.

Ruoxi Jia et al. [4] investigated the Shapley Value and data
valuation, focusing on suitable approximation methods from
cooperative game theory. Although their research provided
important insights, the computational intensity of the Shapley
Value may limit its practicality in large-scale environments.
Zhang et al. [5] introduced a model for a data market where
freshness, quantified by the Age of Information (AoI), is criti-
cal. They analyzed time-dependent and quantity-based pricing
schemes, demonstrating that the latter maximizes provider
profit while minimizing social costs. This study offers a

framework for pricing fresh data, though it primarily addresses
single user-provider interactions.

Duan et al. [6] explored optimal investment and pricing
decisions for cognitive mobile virtual network operators (C-
MVNOs) under spectrum supply uncertainty. They proposed
a model where C-MVNOs dynamically lease spectrum to
maximize profit while serving secondary users. However,
their study mainly focused on C-MVNO and secondary user
interactions without discussing broader implications for large-
scale data markets. Wu et al. [7] proposed a pricing strategy
for Large Model as a Service (LMaaS), introducing the itera-
tive model pricing (IMP) algorithm and robust selection and
rental (RSR) algorithm. Their experiments demonstrated sig-
nificant performance improvements, yet the study focused on
provider-customer interactions without discussing implications
for large-scale markets or advanced analytics integration.

Despite these contributions, existing surveys have not pro-
vided a systematic review of data valuation integration within
the IoT ecosystem. Most research has focused on social
applications of data valuation, leaving a gap in understanding
how these concepts can be applied in IoT environments. This
paper aims to bridge this gap by providing a comprehensive
overview of data valuation methods tailored for IoT applica-
tions, discussing theoretical and practical aspects to enhance
the utility and economic efficiency of IoT data markets.

III. DEFINITION OF DATA VALUATION

As data becomes the driving force behind technological
advancements and economic growth, a fundamental challenge
arises: quantifying the value of data in algorithmic forecasting
and decision-making. However, determining a fair valuation
for personal data remains elusive. Some argue that personal
data should be considered individual property, warranting com-
pensation in exchange for its use [8]. The Shapley value offers
a unique payment scheme that aligns with the concept of data
value, which fulfills many of its expectations. Nevertheless,
calculating the Shapley value typically requires an exponential
amount of time. To overcome this challenge, we apply efficient
algorithms for approximating Shapley values.
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A. Shapley Value

1) Definition: The Shapley value, introduced by Lloyd
Shapley in 1953, investigates the challenge of fairly distribut-
ing rewards in cooperative games. The fundamental concept is
to allocate rewards to each participant based on their marginal
contribution to the overall output. Specifically, the Shapley
value calculates the benefit due to each participant by averag-
ing their marginal contributions across all possible sequences
in which participants can join the coalition. Therefore, the
Shapley’s formula is given by:

ϕi(v) =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ i)− v(S)) (1)

where ϕi(v) represents the Shapley value of participant i,
N denotes the set of all participants, S is a subset of the
participants, v(S) is the value of subset S, |N | is the total
number of participants, and |S| is the size of subset S [9].

2) Benefits: A significant advantage of using Shapley val-
ues is that they offer more comprehensive and insightful
analyses compared to popular methods such as leave-one-
out scores or leverage scores when evaluating the value of
data for a given learning task. For example, data points with
low Shapley values can effectively capture data corruption
and outliers, assisting in the identification and management of
problematic data within the dataset. Conversely, data points
with high Shapley values highlight the types of new data
that should be acquired to enhance the predictive model. This
guidance aids in directing data collection efforts, ultimately
leading to improved model performance and robustness.

3) Drawbacks: However, there are notable drawbacks to
using Shapley values. The primary issue is that calculating
Shapley values necessitates computing all possible marginal
contributions, which becomes exponentially large as the size
of the dataset increases. This makes the direct computation of
Shapley values highly complex and resource-intensive, posing
significant challenges in practical applications.

B. The Approximation to Shapley Value

1) Truncated Monte Carlo Shapley: Truncated Monte Carlo
Shapley is an approximation method for calculating Shapley
values. This method leverages random sampling to efficiently
estimate Shapley values, particularly for large datasets or
complex models. The detailed steps are as follows:

1) Random Sampling of Feature Subsets: Randomly
sample a subset from the set of all input features. The
size of this subset can be adjusted based on computa-
tional resources and the desired accuracy.

2) Contribution Calculation: For each feature in the sam-
pled subset, compute its contribution within the current
subset. This can be done using the Leave-One-Out
method, where the model’s prediction is evaluated with
and without the feature to determine its contribution.

3) Accumulate Contributions: Accumulate the contribu-
tions of each feature across multiple sampled subsets to
obtain an approximate Shapley value for each feature.

4) Repeat Sampling: Repeat this process multiple times
with different sampled subsets, and then average the
Shapley values obtained from each sample to enhance
the accuracy of the estimation [10].

2) Gradient Shapley: Gradient Shapley is a method that
leverages gradient information to accelerate the computation
of Shapley values, measuring the contribution of each feature
to the model’s prediction. The detailed steps are as follows:

1) Model Input and Output: Suppose we have a trained
model f , an input feature vector x, and the goal is to
compute the Shapley value of each feature xi for the
model prediction f(x).

2) Gradient Calculation: Calculate the gradient of the
model output f(x) with respect to each input feature xi,
denoted as ∂f(x)

∂xi
. This calculated gradient represents the

immediate effect of small variations in the input feature
xi on the model’s overall prediction.

3) Marginal Contribution Estimation: For various values
of each input feature xi, perform forward and backward
passes through the model to compute the corresponding
gradients. This detailed gradient information is crucial
for accurately estimating the marginal contributions of
each feature within different feature combinations.

4) Approximate Shapley Value: Combine this gradient
information using appropriate weighting methods to
approximate the Shapley value of each feature. The core
concept here involves estimating the marginal contribu-
tions through gradients rather than explicitly calculating
all possible feature combinations, thereby significantly
reducing the overall computational complexity.

C. Application of Data Valuation

Data valuation models offer structured approaches to assess
the value of data across different fields and industries. This
section explores the primary categories of these models, along
with their specific applications and implications.

1) Market and Economic Value-Based Models: Market
Pricing Models assess data value based on its market price,
crucial for data markets and trading platforms. These models
analyze market dynamics, demand, and supply to establish
fair prices for data transactions. For example, pricing algo-
rithms can determine optimal dataset prices using historical
transactions and current demand, ensuring competitive pricing
strategies. Furthermore, these models can incorporate external
factors such as emerging trends and regulatory changes, en-
hancing their predictive accuracy. Economic Benefit Models
evaluate the direct economic gains from data applications.
For instance, businesses can enhance marketing strategies
using customer data, leading to increased sales and improved
customer engagement. Models like Return on Investment
(ROI) quantify financial returns from data-driven initiatives,
supporting enterprise decision-making and strategic planning
by providing clear insights into the cost-effectiveness of data
investments [11]. Additionally, understanding economic value
can help organizations justify data acquisition costs and priori-
tize data-driven projects that yield the highest financial impact.
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Ultimately, these models not only guide pricing and investment
decisions but also foster a more transparent and efficient data
marketplace, benefiting both buyers and sellers.

2) Content and Quality-Based Models: Content Assess-
ment Models, such as the Laney model, evaluate data utility,
business impact, and quality, considering the three Vs: volume,
velocity, and variety. High-quality data improves decision-
making and operational efficiency [12]. For instance, con-
tent assessment can identify gaps in a customer database,
enhancing customer relationship management through targeted
and personalized strategies. Moreover, these models can help
organizations maintain a competitive advantage by ensuring
they utilize the most relevant and high-quality data available.
Information Quality Models, like the Viscusi and Batini model,
assess data value based on quality, structure, and diffusion
utility [13]. These models are vital for information system
design and data management strategies, as they guide the
selection of data sources that meet quality standards and align
with organizational objectives. Ensuring that data adheres to
these quality benchmarks not only bolsters analytics but also
enhances the reliability of insights derived from data, leading
to more informed and strategic business decisions.

3) Usage and Utility-Based Models: Usage Utility Models
evaluate data value based on its contribution to specific ap-
plications, especially in data science and ML. For instance,
Shapley values can identify which data points improve an
ML model’s performance, allowing organizations to focus
on acquiring and retaining the most impactful data. Utility
Maximization Models optimize the benefits derived from data,
emphasizing its impact on business processes and outcomes. In
healthcare, models like Data Envelopment Analysis (DEA) an-
alyze patient data usage to improve outcomes and operational
efficiency [14]. These models help organizations prioritize data
that maximizes utility while also highlighting the importance
of continuous evaluation to adapt to changing business needs
and technology advancements. Moreover, by utilizing these
models, organizations can enhance their operational frame-
works, making them more resilient and responsive to market
fluctuations, thus further increasing their competitive edge.

4) Cost and Benefit Balance-Based Models: Cost-Benefit
Models, such as the Yanlin and Haijun framework, evaluate
data value based on production costs and usage benefits [15].
These models assist organizations in determining whether
the costs of maintaining large datasets are justified by the
insights they yield, ensuring financial sustainability in data
management practices. By analyzing both direct and indirect
costs, organizations can make more informed and strategic de-
cisions regarding data investments. Cost-Effectiveness Models
emphasize balancing costs and benefits, which is particularly
crucial in budget-constrained scenarios. For example, Net
Present Value (NPV) models guide decisions between data
storage solutions by optimizing cost-performance trade-offs
[16]. This strategic approach enables organizations to allocate
resources effectively, minimizing waste while maximizing the
return on their data assets. Furthermore, by implementing
cost-benefit analysis frameworks, organizations can identify

underperforming assets and efficiently redirect investments
toward more promising and impactful data-driven initiatives.

5) Timeliness and Relationality-Based Models: Timeliness
Evaluation Models, like the Keisler model, assess data value
based on its timeliness and usage conditions, making them
ideal for time-sensitive applications like financial transactions
and monitoring systems [17]. For example, the value of market
data in financial trading heavily depends on its freshness, em-
phasizing the need for real-time data processing capabilities.
Relational Evaluation Models analyze the value of data by con-
sidering interdependencies between data blocks, optimizing
data architecture, and enhancing information flow efficiency
[18]. By understanding these relationships, organizations can
improve data integration and ensure that their data ecosystems
operate cohesively, ultimately leading to better analytical out-
comes and business intelligence. This approach also facilitates
proactive decision-making, as organizations can respond to
data trends and shifts more effectively, thereby enhancing
overall operational agility and market responsiveness.

In conclusion, diverse data valuation models—including
market, content, utility, cost-benefit, timeliness, and relational
perspectives—play a pivotal role in optimizing data use and
maximizing its value. As data becomes increasingly integral to
various industries, the proper application of these models will
be essential in driving both operational success and innovation.

IV. DATA VALUATION AND PRICING WITH IOT

The term IoT was first introduced by Kevin Ashton in 1999
within the context of supply chain management [19]. The
IoT comprises a network of interconnected devices, sensors,
and systems designed to seamlessly integrate the physical and
digital worlds [20]. Atzori et al. [21] propose that the IoT
can be realized through three distinct paradigms: Internet-
oriented (middleware), object-oriented (sensor), and semantic-
oriented (knowledge). While the IoT represents a compelling
and evolving concept, significant challenges persist in ensuring
a secure, efficient, and robust ecosystem that encompasses all
components of the IoT architecture [22].

A. Data Valuation with Blockchain

Blockchain technology represents a significant advance-
ment from the distributed database technology explored since
the 1970s. Distributed Ledger Technology (DLT) processes
databases as distributed shared data, with blockchain being
a notable example. Blockchain enhances data credibility and
security by providing a transparent and immutable record
system. It offers reliable proof of data provenance, ownership,
and transactions, thereby reducing instances of data fraud and
disputes. A smart contract is a computational process that
runs upon transaction execution, involving inputs, outputs, and
state changes. All blockchains incorporate smart contracts to
handle transaction logic, such as verifying input signatures and
matching output balances with inputs [23], [24].

The IoT faces significant challenges in establishing a secure
and resilient ecosystem. Current IoT systems depend on a
centralized server-client model, where devices are connected,

550



identified, and authenticated via cloud servers, and communi-
cation occurs over the Internet. While this approach functions
effectively today, it may not satisfy the future needs of
expanding IoT ecosystems. Blockchain technology offers a
promising solution by enabling the tracking and coordination
of numerous connected devices through decentralized peer-to-
peer messaging, file distribution, and autonomous operations,
without relying on centralized cloud services. Additionally,
blockchain facilitates smart contracts that can autonomously
manage devices, reducing the need for human intervention and
supporting more seamless and automated operations [22].

Furthermore, the decentralization feature of blockchain
eliminates the risk of a single point of failure by recording
all data operations on a distributed ledger, which make data
tamper-proof. The immutability of blockchain ensures that
once data is recorded, it cannot be altered, which enhances data
credibility and security. In addition, blockchain’s transparency
allows all participants to verify and trace data flow. This
prevents forgery and fraud, thereby protecting data integrity
[25]. Blockchain also functions as a trading platform, using
its decentralized DLT to ensure that all transaction records are
permanently stored and unalterable. Each transaction under-
goes verification and recording by nodes within the network,
which ensures data transparency and security. Smart contracts
automatically execute transaction terms, leading to increased
efficiency. Because blockchain is immutable, both parties can
trust the transaction data on the platform, which prevents
fraud and provides a secure, transparent, and efficient trad-
ing environment [26]. Blockchain-based data exchange plat-
forms enable decentralized data sourcing and sharing, reduc-
ing vulnerabilities associated with centralized management.
Technologies like zero-knowledge proofs and homomorphic
encryption provide enhanced privacy protection. Federated
learning systems facilitate the sharing of algorithms without
exposing raw data, further ensuring privacy [27].

In summary, blockchain technology has substantial potential
to improve data security, transparency, and automated trans-
actions, playing a crucial role in the IoT ecosystem and data
valuation. By enabling decentralized control, enhancing data
privacy, and ensuring fair transactions, blockchain technology
paves the way for a more secure and efficient digital future.

B. Data Valuation with Wireless Sensing

Wireless sensing technology plays a crucial role in the IoT
by allowing devices to transmit data without physical con-
nections. These sensors are extensively used in environmental
monitoring, health monitoring, asset tracking, and other fields.
They provide a foundation for data valuation by capturing real-
time data. In a wireless sensing environment, the value of data
is determined by its timeliness, accuracy, and relevance.

The concept of Value of Information (VoI) in Wireless Sen-
sor Networks (WSNs) is defined in various ways, depending
on the focus area. These definitions can be categorized as
follows: (1) Internal System Costs, which encompass factors
such as energy consumption and network resource usage [28];
(2) Probabilistic Factors, which discuss the economic im-

pact on decision-making processes [29]; (3) Decision-Making,
which emphasizes reducing uncertainty to enhance outcomes
[17]; (4) System Utility, which evaluates the usefulness of
information within a specific context [30]; (5) Information
Consumers, which focuses on the goals of applications and the
utility for end users [31]; and (6) External System Costs, which
considers factors such as information pricing and privacy costs
from an economic perspective [32], [33].

Recent technological advances in low-power integrated cir-
cuits and wireless communications have made efficient, low-
cost, and low-power miniature devices available for remote
sensing applications. WSNs utilize these advancements to
deploy numerous intelligent sensors that collect, process, and
analyze data in various environments. Key components of
WSNs include hardware (sensor interfaces, processing units,
transceivers, power supply), communication stack (topology,
routing, MAC layer, internet gateway), middleware (platform-
independent service architecture for sensor applications), and
secure data aggregation methods to ensure network longevity
and data reliability [34]. However, WSNs still face signifi-
cant resource constraints, including limited energy, bandwidth,
and computational resources. To address these challenges,
economic and pricing models are applied for resource opti-
mization in several areas: resource allocation, which adapts
to variable resource availability using pricing mechanisms;
energy control, which uses utility-based pricing strategies
to optimize sensor power levels; and task allocation, which
aims to balance energy consumption and minimize delays by
dynamically adjusting to resource changes [35].

Wireless sensing technology enhances IoT by enabling
real-time data transmission, which is vital for applications
like environmental and health monitoring. VoI in WSNs is
evaluated through various models that investigate system costs,
decision-making processes, and user utility.

C. Data Valuation with Machine Learning

With the large amount of data generated by IoT devices,
ML has become an important tool for data analysis and
valuation. ML algorithms can extract valuable information
and patterns from vast amounts of data, thereby enhancing its
value. In smart cities, ML algorithms can optimize traffic flow,
predict environmental changes, and improve urban manage-
ment efficiency. In industrial IoT, ML can perform predictive
maintenance by analyzing equipment data, thereby reducing
equipment failures and downtime. Moreover, ML can deter-
mine dynamic pricing of data by analyzing market demand and
data quality in real time, which enables the development of
reasonable pricing strategies for data transactions. This data-
driven approach not only increases data utilization but also
enhances the vitality of the data market.

Key components of data valuation—namely quality, quan-
tity, diversity, and freshness—have a substantial impact on
ML. Data quality refers to the accuracy, completeness, and
consistency of data, directly affecting model training effective-
ness. Data quantity relates to the amount of data; more data
generally enhances model performance, though redundancy
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must be considered. Data diversity pertains to the variety of
features and distributions within the data, helping improve
model generalization. Data freshness is crucial for certain
applications, enabling models to stay updated [36].

Yoon et al. [37] designed Data Valuation using Reinforce-
ment Learning (DVRL), a novel method that uses reinforce-
ment learning to evaluate data value. The agent selects data
points for model training and adjusts its strategy based on the
model’s performance on a validation set, learning to identify
high-value data points. Experimental results show that DVRL
outperforms traditional methods in data selection and improv-
ing model overall performance. The Banzhaf value is a metric
used to measure the influence of players in cooperative games.
It evaluates the importance of each player by calculating how
often they are pivotal in all possible coalitions. Specifically,
the Banzhaf value measures how many times a player can
change the outcome of a decision, thus determining their rela-
tive contribution to the overall decision-making process. This
method helps identify which players have greater influence and
decision-making say in the decision-making process [38]. Data
Banzhaf is a new framework that uses the Banzhaf value from
game theory to evaluate data value. This method treats data
points as participants in a cooperative game, calculating each
point’s Banzhaf value to measure its contribution to model
performance, thereby offering a more robust and fair data
valuation mechanism [39]. Furthermore, Davinz is a novel
method for data valuation at the initialization stage of deep
neural networks. By analyzing the network’s initial response
to data points and using gradient information, it assesses the
value of data, thereby reducing computational complexity and
enhancing the efficiency of data selection [40].

In conclusion, data valuation in ML is a complex and evolv-
ing field that integrates diverse methods to assess data signif-
icance. Approaches such as performance-based, information-
theoretic, game-theoretic, and reinforcement learning provide
robust frameworks for evaluating data value. As IoT generates
vast amounts of data, effective valuation strategies will be
essential for maximizing data utility, optimizing ML models,
and advancing various domains. The continued development
of these strategies will enhance the accuracy, fairness, and effi-
ciency of data-driven decision-making, supporting the broader
adoption and success of ML applications.

D. Data Valuation with Edge Computing

As the number of services increases, critical needs in
IoT architecture include reducing data latency and improving
resource utilization efficiency. Edge computing’s three-tier
architecture includes terminal, edge, and cloud layers. The
terminal layer collects data and sends it to the edge layer
for processing and storage, while the cloud layer handles
large-scale centralized processing [41]. Edge computing is
a distributed computing paradigm that shifts data processing
and analysis from central data centers to the network edge,
closer to where the data is generated. This approach is
particularly advantageous in IoT environments, as it reduces
data transmission latency, enhances real-time processing ca-

pabilities, and efficiently manages large data volumes. By
placing substantial computing and storage resources—referred
to as clouds, microdata centers, or fog nodes—at the edge
of the Internet, near mobile devices or sensors, edge com-
puting optimizes performance. Cloudlets, small data centers
located at the network edge, provide low-latency and high-
bandwidth computing resources in close proximity to data
sources and user devices. They act as an intermediary layer
between edge devices and cloud data centers, facilitating real-
time data processing and localized services. This is essential
for applications such as supply chain tracking, point of sale
systems, augmented reality, autonomous driving, smart cities,
and distributed artificial intelligence processing [42] [43].

The Lambda architecture is a method to address pricing
issues in large-scale data processing. This architecture consists
of the batch layer, speed layer, and serving layer. The batch
layer processes historical data using distributed file systems
and batch processing frameworks, generating precomputed
views. The speed layer handles real-time data using stream
processing frameworks, creating real-time views. The serving
layer merges data from both the batch and speed layers to
provide a unified query interface for users. This Lambda archi-
tecture enables efficient, accurate, and real-time data analysis
to support complex pricing strategies [44]. Least Processing
Cost First (LPCF) is an optimization algorithm designed to
balance energy consumption, processing capability, and data
transport efficiency in edge-fog computing environments. The
algorithm dynamically adjusts task allocation strategies by
analyzing task characteristics (such as computational com-
plexity and data volume) and the resource status of each
node, reducing energy consumption, improving processing
efficiency, and minimizing data transmission delays compared
to traditional static task allocation methods [45]. Dautov et al.
[46] propose an automated task allocation method focused on
optimizing IoT data-intensive applications in clustered edge
computing environments. The method employs intelligent al-
gorithms (such as genetic algorithms and heuristic methods) to
dynamically assign tasks to edge computing nodes, taking into
account task resource requirements, node computing power,
and network latency. This approach aims to enhance overall
system resource utilization, reduce task completion time, and
improve application response times.

The domain of IoT architecture and edge computing is both
complex and rapidly advancing, offering diverse methods to
tackle challenges in data processing and resource management.
Techniques such as the three-tier architecture of edge comput-
ing, the Lambda architecture for large-scale data handling, and
sophisticated task allocation algorithms collectively provide
robust solutions for enhancing performance and minimizing
latency. As IoT systems generate increasingly large volumes of
data, these methodologies will be vital for optimizing real-time
processing, improving resource utilization, and managing in-
tricate data tasks. The continuous development and refinement
of these approaches will facilitate more efficient and scalable
IoT systems, thereby supporting the effective deployment and
growth of applications across various fields.

552



V. VISION OF DATA VALUATION

With advancements in LLMs, network capacity, and compu-
tational power, data valuation is set for even more significant
improvements across various sectors beyond finance. The
complexity of data valuation arises from the diversity and
heterogeneity of data sources. Data is generated from numer-
ous platforms, devices, and sources, each with unique formats,
quality, and reliability. Integrating these disparate datasets to
derive meaningful valuation metrics presents substantial chal-
lenges, particularly with the rapid growth of unstructured data,
such as social media posts and IoT sensor data. Traditional
methods often struggle to fully capture the value embedded in
these diverse data types, hindering accurate and comprehensive
valuation strategies. The following subsections outline three
key directions for enhancing data valuation.

A. Privacy and Compliance

Different countries and regions enforce varying laws and
regulations on data privacy and protection, such as the General
Data Protection Regulation (GDPR), creating significant chal-
lenges for data collection, processing, and valuation. Ethical
considerations also arise, particularly regarding fair data use,
sharing practices, and personal privacy protection. Thus, pri-
vacy and compliance are critical aspects of data valuation. Or-
ganizations must establish robust data governance mechanisms
to ensure compliance with relevant regulations and secure
data handling practices [47]. This process can be resource-
intensive and may necessitate significant overhauls of existing
data management practices, which can strain organizational re-
sources. Furthermore, organizations must navigate challenges
associated with cross-border data transfers and processing. In a
globalized business environment, the need for free data flow is
evident, but balancing this need with privacy and compliance
remains complex. Continuous monitoring of evolving data pri-
vacy laws in different jurisdictions is essential. Organizations
should invest in developing flexible data management systems
that can swiftly adapt to changing compliance requirements
while maintaining effective operational capabilities.

B. Dynamic and Uncertain Nature

The value of data is not static; it evolves over time due
to market demands and technological advancements, compli-
cating accurate and timely assessment. Throughout the data
lifecycle—from generation and storage to utilization—data
value fluctuates, necessitating frequent and continuous eval-
uation and management. To address this dynamic nature,
organizations must develop flexible data valuation models
that can adapt to various temporal and situational contexts
[48]. This adaptability often requires significant investment in
research and development, making it a complex undertaking.
Additionally, market demands and emerging technologies can
drastically influence data value. For instance, advancements
in artificial intelligence can transform previously low-value
data into highly valuable assets, while traditionally high-value
data may depreciate due to shifts in consumer behavior or
market trends. Organizations must actively monitor market

dynamics and technological changes, adjusting their data val-
uation strategies accordingly to ensure relevance and accuracy.
The challenge lies in effectively integrating real-time market
insights into existing valuation frameworks, which requires
agility and responsiveness in decision-making processes.

C. Lack of Tools and Standards

The current lack of uniform tools and standards for data
valuation results in inconsistent methodologies across differ-
ent enterprises, leading to poor comparability and reliability
of valuation outcomes. This inconsistency undermines the
transparency and fairness of data transactions, which in turn
stifles the growth of the data market. To address this issue,
establishing standardized data valuation methods and tools is
essential. Industry stakeholders must collaborate to develop
universally accepted standards for data classification, valuation
models, and data quality assessments. However, achieving
consensus on such standards can be challenging due to the
diverse interests of stakeholders and the rapid pace of tech-
nological evolution. Developers and researchers should focus
on creating efficient and accurate data valuation tools that
enable organizations to assess data more effectively. Moreover,
industry associations and standardization bodies play a crucial
role in promoting the establishment and dissemination of data
valuation standards. By fostering collaboration among various
entities, these organizations can help ensure that the estab-
lished standards meet the diverse needs of the industry while
facilitating the healthy development of the data market. By
enhancing transparency and consistency in data transactions
through standardized tools and methods, organizations can
strengthen trust in the data market, thereby promoting the
circulation and utilization of data to maximize its overall value.

VI. CONCLUSION

Data valuation is crucial in modern business, influencing
strategic decision-making, investment, market pricing, and risk
management. It has become essential in the IoT ecosystem
and will increasingly optimize and monetize IoT applications.
However, it faces challenges, including complex valuation
methods, diverse legal and ethical issues, the dynamic nature
of data value, and technological limitations. This paper reviews
existing data valuation methodologies and frameworks, explor-
ing their integration with IoT systems. It also presents our
vision for future development in the IoT domain, emphasizing
dynamic and adaptive data valuation, privacy and compliance,
and widely standardized valuation tools. We believe the grow-
ing IoT industry will benefit from accurate, real-time data
valuation, as evolving data forms, values, and meanings will
ultimately enhance efficiency, security, and economic value,
driving continuous innovation across various sectors.
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