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Abstract—The rapid proliferation of the Internet of Things
(IoT) has resulted in an exponential surge in data generation,
necessitating robust and secure platforms for data transactions.
Blockchain technology, characterized by its immutability and de-
centralized architecture, emerges as a promising solution offering
enhanced transparency and security. This survey provides an in-
depth exploration of blockchain-based incentive mechanisms for
IoT applications, systematically categorized into Shapley value,
Stackelberg game, and auction model. Each category is examined
through its theoretical underpinnings, analytical methodologies,
and specific advantages within IoT. By discussing the unique
challenges and opportunities at the convergence of blockchain
and IoT, this paper seeks to furnish a comprehensive guide for
future endeavors in blockchain-enabled IoT ecosystems.

Index Terms—Internet of Things, Incentive Mechanism,
Blockchain, Game Theory

I. INTRODUCTION

With the widespread use of Internet of Things (IoT) sensors
and advancements in information technology, IoT has been
rapidly developed in various aspects of our lives. IoT systems
now play an increasingly significant role in diverse industries,
such as smart homes [1], smart cities [2], energy systems [3],
[4], transportation systems [5], and healthcare systems [6],
[7]. The IoT continues to proliferate, generating enormous
volume of data by IoT devices, which is now a new factor of
production and driving a new wave of technological innovation
[8]. Therefore, effective utilization of the data generated by
and provided for IoT systems is both important and pressing.

Despite the enormous potential of IoT, devices operating
as independent entities often generate data involving privacy
concerns [9], [10]. Consequently, there is a growing need for a
secure platform to facilitate data transactions [11]. Blockchain
technology presents a promising solution to these challenges
due to its inherent characteristics such as transparency, reliabil-
ity, privacy protection, and traceability [12], [13]. Blockchain
mechanisms can be part of a security framework to protect
many loT-oriented applications, ensuring integrity and privacy
even when datasets are released to the public. For example,
Han et al. [14] highlighted common security issues in current
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Fig. 1. Overview of Blockchain-Based Incentive Mechanism

IoT architecture and the advantages of integrating blockchain
with IoT. Andoni et al. [15] investigated blockchain appli-
cations in [oT transaction scenarios, including decentralized
markets, electric vehicle charging, and electronic mobility.

However, 10T devices often lack the computational power
or incentive to engage in data transactions [16], [17]. In
this context, implementing incentive mechanisms is crucial
to stimulate initial participation, fostering a virtuous cycle of
increased engagement and data exchange. While existing lit-
erature reviews cover blockchain-based incentive mechanisms
and blockchain applications in IoT [18]-[21], there is a no-
table gap in comprehensive surveys that systematically detail
blockchain-based incentive mechanisms for IoT applications.

Therefore, to address this gap, this survey categorizes ex-
isting blockchain-based incentive mechanisms based on their
design logic, explores their workflows, and examines their
applications and future prospects in IoT scenarios. It aims to
provide an in-depth investigation to help newcomers obtain a
general understanding of this complex and emerging research
field. The survey divides the blockchain-based incentive mech-
anisms for IoT into three categories: Shapley value-based,



Stackelberg game-based, and auction-based, analyzing their
theoretical foundations, analysis method, and application in
IoT as illustrated in the framework shown in Fig 1.

II. RELATED WORK

In recent years, significant research has been conducted on
incentive mechanisms in both blockchain and IoT contexts.
As IoT technology has rapidly advanced, many scholars have
envisioned IoT devices profiting through data exchange. To
address this, Li et al. [7] identified two critical challenges
in the IoT trading market: “efficiency” and “safety.” They
emphasized privacy-preserving auction mechanisms for IoT-
based transactional markets, systematically explaining these
mechanisms and addressing the privacy-efficiency trade-oft.

The inherent characteristics of blockchain, such as decen-
tralization, transparency, immutability, and distributed ledger
technology, make it a powerful tool for addressing IoT
challenges. Dai et al. [22] investigated the integration of
blockchain with IoT, examining the architecture and how
blockchain can provide opportunities to address IoT chal-
lenges. Similarly, Uddin et al. [23] analyzed the latest ad-
vancements in IoT blockchain applications in contexts such
as e-health, smart cities, and intelligent transportation, and
proposed barriers, research gaps, and potential solutions.

In the context of these platforms, the importance of incen-
tive mechanisms becomes evident. Song et al. [24] highlighted
the necessity of reasonable monetization rules and incentive
systems for the sustainability of blockchain-based data-sharing
systems. Therefore, more research towards incentive mecha-
nisms has been conducted and reviewed. Huang et al. [25]
provided a comprehensive overview of blockchain incentive
mechanisms, focusing on the issuance and allocation of tokens
and analyzing the development of the token economy. Han et
al. [14] categorized blockchain incentive mechanisms based
on blockchain versions, incentive forms, and goals, discussing
the advantages and disadvantages of current mechanisms.

Further research has been conducted on the application
of incentive mechanisms in different specific domains. For
example, Xu et al. [18] provided a survey of blockchain-
based crowd-sensing incentive mechanisms, classifying them
by incentive goal and reward form. Yu et al. [19] summa-
rized the consensus and incentive mechanisms of blockchain
networks derived from P2P systems, discussing issues related
to blockchain storage and application scenarios. lhle et al.
[20] reviewed incentive mechanisms in peer-to-peer networks,
categorizing them based on monetary, reputation, and service
rewards and evaluating each mechanism’s data management,
attack resistance, and contribution model.

Integrating blockchain and IoT generates new opportunities
and challenges for incentive mechanisms. Panarello et al. [8]
conducted a systematic survey on the integration of blockchain
and IoT, focusing on device manipulation and data manage-
ment while analyzing current research trends and categorizing
literature based on application domains. Maddikunta et al. [21]
provided a systematic review of incentive techniques, offering
a background on IoT data networks and describing several key
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incentive technologies, including blockchain, game theory, and
artificial intelligence. They explored the potential of incentives
in critical IoT applications, covering possible scenarios from
smart healthcare to smart industries.

Despite the broad view provided by existing literature on
incentive mechanisms in blockchain and IoT independently,
there is a lack of systematic reviews focusing specifically on
blockchain-based incentive mechanisms for IoT applications.
This survey aims to fill this gap by offering a comprehen-
sive overview and analysis of existing solutions, discussing
the challenges and opportunities in this rapidly developing
field. By doing so, it aims to help newcomers understand
the complexities and potential of blockchain-based incentive
mechanisms in [oT, thereby contributing to the advancement
of research and practical applications in this area.

III. SHAPLEY VALUE-BASED INCENTIVE MECHANISM
A. Theoretical Foundation

The Shapley value (SV), rooted in cooperative game theory,
provides a fair method for distributing total gains among
participants based on their marginal contributions [26]. This
ensures that rewards are proportionate to each participant’s
input, particularly in scenarios where contributions are unequal
but cooperation is essential for achieving payoffs [27].

In IoT applications, multiple devices often collaborate to
provide data or solve complete tasks. However, a simple equal
distribution of rewards may diminish individual motivation,
leading to lower quality and efficiency. The Shapley value
addresses this by quantifying each participant’s contribution,
ensuring fair distribution based on actual input and effort.

The Shapley value calculation takes into account all possible
combinations of participants and their marginal contributions
to each possible subset of participants, allowing for a com-
prehensive evaluation of each participant’s role [28]. Imple-
menting SV in a blockchain-based IoT scenario enables smart
contracts to autonomously calculate and distribute rewards, in-
centivizing devices to share more resources for higher returns.

Moreover, the Shapley value is particularly suitable for
environments where the value generated by the collaboration is
not simply additive. In many IoT applications, the combination
of data from multiple sources can create more value than
the sum of individual contributions. For example, in a smart
city application, data from various sensors can be combined
to provide comprehensive insights that are far more valuable
than isolated data points. The Shapley value captures these
synergies, ensuring that participants who contribute to these
valuable combinations are adequately rewarded.

Using the SV as an incentive mechanism in IoT can lead to
more efficient and high-quality outcomes by promoting active
participation and fair reward based on contributions.

B. Analysis Methods

The SV is typically calculated by considering all possible
coalitions of participants and averaging each participant’s
marginal contribution weighted across all these feasible coali-
tions. SV is usually expressed as a function of several factors:



SV(i) = ﬁ SEC:P (f(SnP)— f(P))

where S is any feasible coalitions; P is a particular partic-
ipant. f is a function that measures the value of a coalition.
Depending on the scenario, different metrics are used, such as
the Fl-score and loss function; N is the normalization factor.

The Shapley value need to satisfy properties such as Ad-
ditivity, Null Player, and Symmetry, which ensure its unique
advantages in fair reward distribution:

« Additivity: SV(AU B) = SV(A) + SV(B)

 Null Player: SV(A U {i}) = SV(A) if ¢ is a null player

o Symmetry: SV(AUB) =SV(BU A)

However, calculating the Shapley value is often both time-
consuming and computationally intensive [29], with a com-
plexity of O(N!), where N is the number of participants.
Therefore, practical applications often require optimizations.

C. Application Scenarios in loT

Medical Data Sharing: Blockchain’s immutability and
transparency have been widely applied to improve the effi-
ciency and security of medical data sharing. Zhu et al. [6]
developed a blockchain-based cooperation model for medical
data sharing. They defined and derived SVs for data owners,
the unit model, and the cooperation model separately. The
normalized SVs were used to calculate income distribution
among data owners, miners, and third parties. This sys-
tem demonstrates the effectiveness of the SV-based incentive
mechanism in promoting data sharing in medical scenarios.

Federated Learning (FL): Liu et al. [30] proposed a peer-
to-peer payment system for FL, where the Shapley value is
used to calculate each client’s fair contribution to the global
model. This method uses the Shapley Proof consensus protocol
to ensure accurate calculations and encourages FL clients
to provide high-quality data. However, this method does not
address potential free-riding issues. Yang et al. [31] extended
this by introducing a joint optimization mechanism that com-
bines contract theory and Shapley value. This mechanism
includes penalties and rewards assignments to further ensure
high-quality contributions, providing a more robust incentive
structure for clients with varying resources and data sizes.

AI Model Trading: Nguyen et al. [32] introduced a
blockchain-based Al model trading marketplace, where vast
amounts of data are crucial. They evaluated the proportionate
relationship between local data and the quality of the trained
model and estimated the value of sellers’ data in training the
model using a distributed SV approach. This incentivized IoT
devices to share data, ensuring fair compensation based on
each data set’s contribution to model training quality.

Industrial IoT (IIoT): In IIoT, the security and accuracy
of data transmission are crucial. To address the single point
of failure in traditional centralized systems, Sohail et al. [33]
proposed a Shapley value-based incentive distribution frame-
work for secure data sharing using blockchain technology. The
profit distribution is based on each data provider’s contribution
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to the coalition, with data value determined by its uniqueness
and quality. The framework fairly distributes incentives based
on the data provider’s contribution to the overall F1-score.

Bandwidth Allocation: Efficient resource utilization in
dynamic IoT environments necessitates effective bandwidth
allocation. Kim et al. [29] extended the concept of the SV to
bandwidth allocation. This algorithm operates through a two-
step process involving cooperative games both between Access
Points (APs) and within APs. In the inter-APs game, the base
station dynamically allocates available bandwidth among APs
using an advanced SV method. This advanced SV incentive
mechanism can not only ensure balanced performance but
also enhance overall system resource utilization compared to
existing schemes, demonstrating its efficiency in managing
multimedia services in IoT environments.

IV. STACKELBERG GAME-BASED INCENTIVE MECHANISM
A. Theoretical Foundation

The Stackelberg game is a classic two-stage dynamic game
with complete information, describing sequential interactions
between strategic players. In this model, the leader first
chooses a strategy with full knowledge of the follower’s
decision criterion, and then the follower makes decisions based
on the leader’s strategy. This model is crucial in systems
where rational participants optimize returns, inspiring the
development of efficient and secure trading environments [34].

Combining blockchain with IoT opens new opportunities for
applying the Stackelberg game in distributed settings. Scholars
modeled incentive mechanisms based on this game to estab-
lish optimal strategies for devices with varying capabilities.
The leader-follower dynamic provides a structured interaction
framework, essential for fair and efficient resource allocation.

Furthermore, the Stackelberg game can adapt to multi-leader
and multi-follower scenarios, capturing the complexities of
IoT environments [35]. This adaptation allows for realistic
modeling of interactions among devices with distinct objec-
tives and constraints. With blockchain technology, interactions
in these models can be transparently recorded and verified,
ensuring the trustworthiness of rules and outcomes.

In conclusion, the Stackelberg game provides a robust
framework for designing incentive mechanisms in IoT applica-
tions. By addressing traditional limitations of traditional mod-
els and leveraging blockchain, researchers can develop systems
that enhance cooperation, optimize resource allocation, and
ensure fair interactions among IoT devices.

B. Analysis Methods

When modeling the Stackelberg game, both parties’ strategy
and equilibrium are key aspects that need to be considered:

1) Strategy Function: The strategy function, usually ex-
pressed as p4(S), describes a rational player’s action A
towards the current situation S of the game. It is essential
to analyze the actions that both parties will take in a given
situation, which can usually be described as an optimization
calculation to maximize utility under certain constraints. This
involves designing the utility function, typically focusing on



benefits minus costs, while considering other factors that
influence decisions, such as time and distance.

2) Existence of Equilibrium: Stackelberg Equilibrium (SE)
is defined as the following: Let T* be a solution for P1 and
S* be a solution for P2. Then, (S*, T*) denotes an SE for the
game if for any (S, T), the following conditions are fulfilled:

Up1(S*,T*) > Up1(S,T)
Up2(S*,T*) > Upa(S,T)

If the equilibrium is reached. both the two rational parties will
not move after then. Then the strategy can be further analyzed.
Therefore, when establishing incentive mechanisms using the
Stackelberg game, proving the existence of equilibrium is
crucial. This is often done by designing effective algorithms
or using mathematical tools to demonstrate the presence of
Nash equilibrium. For example, Markov decision processes
are used to observe the state changes over time, maintaining
optimal decisions and establishing Nash equilibrium to ensure
the interests of all parties in the supply chain [36].

3) Uniqueness of Equilibrium: Proving the uniqueness
of Nash equilibrium often involves technical methods and
efficient algorithm design. If the utility function is strictly
concave, the NE problem can be transformed into a concave
utility-maximizing problem and solved using first and second
derivatives, yielding the unique solution [37]. Additionally,
methods like Lagrange and Karush—-Kuhn-Tucker conditions
are commonly employed to solve Stackelberg equilibrium [38].

C. Application Scenarios in loT

Supply Chain Management: In supply chain manage-
ment, Stackelberg game effectively coordinates the decisions
of various parties. The transparency provided by blockchain
allows participants to make more accurate decisions, enhanc-
ing coordination efficiency [39]. Research has shown that
blockchain possesses the necessary attributes to establish Nash
equilibrium, applicable in coordinating complex supply chains
to ensure security, trust, and profit. Game theory models have
developed novel incentive methods that encourage participants
in the supply chain to establish a more effective balance,
reducing uncertainty across the entire supply chain by max-
imizing individual benefits. Blockchain’s transparency helps
organize information related to making effective decisions on
the blockchain, relevant in complex supply chain networks like
aircraft and automobile manufacturing and assembly networks.

Data Sharing in IIoT: In IIoT, the Stackelberg game model
can set price strategies for data storage and transmission,
incentivizing data owners to share data [40]. The data trading
in ITIoT is modeled as a multiple-leader and multiple-follower
Stackelberg game. In the first stage, edge devices act as leaders
and set data service task prices. In the second stage, data
owners, as followers, decide the amount of data to store and
transmit. Simulation results show that total revenue for edge
devices increases by 59%, and utility for data owners increases
by 52% compared to traditional schemes.

Edge Computing: IoT devices generate vast amounts of
data, but a lack of trust among IoT entities and mistrust of
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data-sharing platforms can hinder data sharing. Blockchain’s
decentralization and transparency can effectively mitigate
these challenges, facilitating data storage, acquisition, and
exchange among IoT devices and platforms [38]. However,
the mining process in blockchain demands significant com-
puting power, which lightweight IoT devices frequently lack.
Consequently, establishing a blockchain platform requires in-
centivizing IoT devices to procure computational resources
from edge servers [17]. To encourage IoT devices to buy
more computing resources, a Stackelberg game model-based
incentive mechanism can be employed. In the first stage, edge
servers or the blockchain platform, acting as the computing
power providers, set rewards to motivate miners’ participation
in the mining process. The pricing strategy is determined by
the services offered to miners. In the second stage, miners as-
sess the optimal quantity of computational power to purchase
based on the previously established price and rewards.
Mobile Crowdsensing: In mobile crowdsensing, the Stack-
elberg game-based incentive mechanism can effectively en-
courage a larger amount of end users to participate. Hu et
al. [41] modeled a three-stage Stackelberg game, captured
interactions between task initiators, participants, and base
stations, and achieved automated task allocation and reward
distribution. In the first stage, monthly-pay participants sign
up for long-term engagement and receive monthly payments.
In the second stage, task initiators select monthly-pay partic-
ipants according to the requirements of the sensing tasks and
determine rewards to hire additional instant-pay participants to
complete the tasks. In the third stage, instant-pay participants
decide the size of the sensory data they provide based on
their utility. By structuring the game in this way, the model
optimizes participation while balancing costs and benefits for
each stakeholder. Furthermore, the hierarchical nature of the
game ensures adaptability to varying task complexities and
participant availability. Blockchain enables smart contracts to
support the automation of sensing task allocation, task execu-
tion, and reward distribution, facilitating secure and efficient
trading of massive loT data from mobile end users.
Federated Learning in IoT: Federated Learning (FL)
is a popular collaborative learning framework that signifi-
cantly improves model performance without collecting raw
data. To invite data owners to participate in FL, researchers
have designed various incentive mechanisms. However, due
to information asymmetry, uncertainties about data owners’
reputation, computing power, and data volume present high
costs and low efficiency in existing solutions. Chen et al. [42]
proposed a multi-factor incentive mechanism for federated
learning based on the Stackelberg game, combined with a
reputation mechanism to enhance participation enthusiasm and
data quality. In the first stage, the task publisher announces the
task, and data owners determine the optimal training strategy,
considering the model accuracy contributed by the data owner,
under the condition that they know the reward received from
the task publisher. In the second stage, all data owners try to
determine a training strategy greater than the model accuracy
in the first stage, thus receiving more rewards from the task



publisher, forming a non-cooperative game.

V. AUCTION-BASED INCENTIVE MECHANISM
A. Theoretical Formulation

An auction is a process of buying and selling goods or
services, involving the offering of items for bid, waiting for
the highest bid, and selling the item to the highest bidder
under the supervision of an auctioneer. Due to its fairness,
auction theory has become one of the most successful and
active branches in the field of economics [43]. Incentives can
increase participation and competition in auctions, leading to
higher revenues for sellers and higher perceived value for
buyers. Therefore, they are often used as incentive schemes to
maximize objectives such as revenue, profit, or social welfare.

With the growing demand for data and transactions in IoT,
more scholars are shifting their focus to this area. However,
without an effective incentive strategy for participants, bal-
ancing interests between multiple parties is difficult. As a
result, most IoT users are reluctant to share data or forward
messages. Moreover, massive sensing data (such as locations)
are vulnerable to personal privacy leakage, which hinders IoT
users from joining the data-sharing market [44].

Traditional centralized auctions typically require a trusted
third party to control the market, record transactions, and
manage the entire auction process [45]. This model faces
high costs due to commissions and significant potential risks
from single-point attacks, where auctioneers may be mali-
cious. To address these issues, many scholars have intro-
duced blockchain technology, which offers decentralization,
security, and trust advantages for resource transactions, such
as energy, data, and computational resources. Specifically,
smart contracts in blockchain can act as autonomous agents to
enforce predefined rules (such as auction mechanisms) without
any censorship or third-party interference. However, most
blockchain platforms’ smart contracts cannot support overly
complex logic in predefined rules because each step consumes
significant resources. Therefore, relatively simple auction-
based incentive mechanisms have become a research focus
and have demonstrated great potential in various experiments.

B. Analysis Method

Designing an auction mechanism based on blockchain can
save the commissions of hiring a trusted third party. Instead,
smart contracts can manage, execute, complete, and record
transactions through predefined rules [46]. Incentives can be
used in auctions to attract more bidders, increase competition,
and enhance revenue. When simulating IoT application sce-
narios on blockchain using auctions, constructing an incentive
mechanism typically needs to consider information symmetry
and the dominance of auctioneers and bidders.

Commonly used auction approaches for blockchain-based
incentive mechanisms include the following three models:

Double Auction: Double auction is a multi-item auction
widely applied to deal with optimal allocation problems,
featuring a many-to-many structure where sellers and buyers
respectively submit their asks and bids [47].
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Reverse Auction: Reverse auction is a buyer-side auction
where the traditional relationship between buyers and sellers
is reversed. Sellers compete to obtain business from the buyer,
and prices usually decrease as sellers underbid each other, thus
benefiting buyers by saving costs [48].

Hierarchical Auction: Hierarchical auction utilizes a hier-
archical idea to solve complicated allocation issues. Hierar-
chical auctions address complex allocation issues by dividing
them into multiple layers, each treated as a separate allocation
problem where various auction methods can be applied [49].

Moreover, incentive mechanisms in IoT scenarios entail
trade-offs requiring careful consideration by auctioneers and
bidders. Auctioneers must consider various factors such as
the type and value of IoT data services, the heterogeneity of
participants, the form and rules of the auction, the cost and
benefits of incentives, and other potential trade-offs. For exam-
ple, providing discounts to winners can increase participation
and competition but reduce profits. Offering rewards to non-
winners can enhance satisfaction and retention but decrease
the motivation of higher bidders and auction efficiency [50].
Addressing credit issues can ensure future benefits and honesty
but may lead to lock-in effects and reduced competition [51].
Therefore, designing the optimal incentive scheme for IoT
applications requires a deep understanding of the auction
environment and participants’ preferences, along with the
ability to evaluate various scenarios and outcomes.

C. Application Scenarios in loT

Edge Computing: A common challenge in IIoT is the
limited computational capability of devices, where edge com-
puting is a promising solution. In practice, edge resource
allocation involves a multi-layer structure, posing challenges
due to incomplete information between layers. To address
this property, Ling et al. [12] proposed a hierarchical auction
mechanism for edge computing in blockchain-empowered IoT.
They conducted ascending clock auctions in both top-markets
and sub-markets. Resource providers bid in the top-market,
intermediaries purchase accordingly, and end users bid in the
sub-market, ensuring fair and reasonable pricing.

Baranwal et al. [52] addressed the elimination of trusted
third parties and tackled challenges such as IIoT device mobil-
ity, edge server heterogeneity, false guarantees, result latency,
and server responsiveness. They introduced a decentralized
auction-based resource allocation mechanism using consor-
tium blockchain and smart contracts. Their system encourages
truthful bidding from edge resource providers through incen-
tives and calculates IIoT device satisfaction based on various
quality parameters. The proposed mechanism ensures sealed
bids, no bidder impersonation,and immutable auction results.

Data Sharing: Cai et al. [53] proposed a hierarchical
data auction model implemented through smart contracts to
maximize the overall social welfare of all participants. Data
sharing among IoT devices is typically subjected to limitations
caused by multi-layer communication networks. This mecha-
nism designs a three-layer data auction model, including data



agents and corresponding data allocation and pricing rules, and
considers the impact of data transmission cost.

Electricity Trading: Han et al. [3] proposed a double
incentive trading mechanism that combines blockchain and
IoT technology, considering the external costs of producers
and the efficiency of consumers in blockchain-based electricity
trading. By combining these factors with bid prices, they
obtain a priority value for transactions. Wang et al. [54] then
proposed a decentralized electricity trading model for higher
frequency demand based on blockchain and continuous double
auction (CDA) mechanisms. Buyers and sellers first complete
market matching, and due to frequent market price fluctu-
ations, they adopt an adaptive aggressive strategy to adjust
quotes timely according to market changes. CDA can quickly
achieve market equilibrium, is suitable for the decentralized
nature of microgrids, and does not require centralized control.
It utilizes the dynamics of the free market to balance supply
and demand and has relatively low computational costs.

Task Collaboration: Cheng et al. [50] proposed an auction-
based incentive mechanism for task collaboration among IoT
devices. A core feature of IoT applications is the ability
to perform collaborative tasks using data from different IoT
managers. However, the success of tasks relies heavily on the
number of actively participating IoT managers. Managers who
continuously fail to win bids might exit the auction, reducing
overall effectiveness. To address this, Cheng et al. utilized a
virtual credit mechanism to compensate managers who failed
in previous auctions and introduced a dropout recruitment
plan to attract them back. This approach ensures sufficient
participation and prevents incentive cost explosions.

Crowdsourcing: Liang et al. [51] proposed a grade-based
task sorting (GTS) algorithm to determine the service priority
of heterogeneous crowdsourcers to motivate their cooperative
behavior. Workers submit bids for interested subtasks and pay
deposits to suppress malicious bidding. Miners verify bids and
deposit transactions and select workers for each subtask based
on crowdsourcers’ requirements and platform goals. Selected
workers perform their assigned subtasks. Miners verify task
completion and update the grade values for each system entity.
Miners calculate payments to selected workers according to
the payment structure designed by the system designer and
receive rewards from crowdsourcing. Finally, miners return
deposits to crowdsourcers after deducting their payments.

VI. VISION

Blockchain technology enhances transparency and security
by eliminating centralized intermediaries, which is vital for
the decentralized IoT architecture. It enables secure data
exchanges among IoT devices from various service providers.
Smart contracts automate incentives, ensuring fair resource
distribution while lowering operational costs. Furthermore,
blockchain’s immutability secures the authenticity of IoT
transactions and data, critical for smart cities and IIoT applica-
tions. This section examines the future potential of blockchain-
based incentive mechanisms in IoT, comparing and emphasiz-
ing their advantages and applications.

560

A. Evaluation of Shapley Value-Based Mechanisms

Advantages: The Shapley value provides a fair method
of profit distribution, suitable for scenarios where multiple
IoT devices collaborate to complete tasks. The Shapley value-
based incentive mechanism is highly effective in distributing
rewards based on contributions, which incentivizes active
participation and improves the quality and efficiency of task
completion, especially when the parties are in cooperation.

Challenges: Calculating the Shapley value is usually com-
putationally intensive, especially when a large number of IoT
devices are involved. Assessing the contribution of each device
becomes more difficult, making this incentive mechanism less
suitable for scenarios with many participants. Additionally,
accurately evaluating each IoT device’s contribution is chal-
lenging. If the evaluation is not comprehensive enough, the
actual contribution and the calculated Shapley value may not
align, which even discourages device participation.

Future Development: Distributed computing and opti-
mization algorithms can reduce computational complexity.
Introducing more precise contribution assessment methods can
enhance the effectiveness of Shapley value mechanisms in IoT.

B. Evaluation of Stackelberg Game-Based Mechanisms

Advantages: Stackelberg game models can simulate dy-
namic interactions among [oT devices, considering the diverse
interests of buyers, sellers, and multiple parties. This approach
optimizes by modeling complex scenarios from each party’s
perspective and the leader-follower structure effectively coor-
dinates device interactions, reflecting IoT transactions.

Challenges: Designing high-precision game models and
strategies is complex and requires a deep understanding
of behaviors of all the participants. Accurately predicting
complex decisions is challenging, and models often assume
complete information, which may not be achievable in all
scenarios. Additionally, traditional Stackelberg game models
rarely consider the reputation issues of IoT devices, reducing
their effectiveness in addressing the free rider problem [55].

Future Development: Incorporating reputation manage-
ment is essential to enhance system trust and cooperation,
particularly to address the bad point problem. Integrating this
with blockchain technology can record and verify participants’
behaviors, ensuring transparency and reliability. Additionally,
incorporating machine learning and artificial intelligence can
optimize game strategies and decision-making processes.

C. Evaluation of Auction-Based Mechanisms

Advantages: Auction mechanisms, through the choice of
auction methods, processes, and leading parties, can increase
the revenue of buyers and sellers. Among all the auction mech-
anisms, reverse auctions, double auctions, and hierarchical
auctions are widely used for IoT applications, exhibiting high
flexibility and efficiency in resource allocation and IoT data
transactions, with each process favoring different parties.

Challenges: Auction mechanisms may lead to speculative
behaviors, affecting system stability, and may result in cost es-
calation issues [56]. Participants who frequently lose may give



up cooperation, and those who exit weaken price competition,
leading to increased incentive costs, as remaining managers
may raise their bids to earn more profits. Therefore, designing
effective auction mechanisms requires considering multiple
factors and choosing different auction methods based on
specific scenarios. Currently, most blockchain platforms’ smart
contracts cannot support overly complex logic for predefined
rules, as each step consumes significant resources.

Future Development: Future Development: Integrating
blockchain technology can enhance the efficiency and security
of auction mechanisms by ensuring transaction transparency
and credibility. Two fundamental components in the integra-
tion of blockchain and IoT are the consensus mechanism
and the incentive structure [57]. With well-designed smart
contracts, blockchain-based incentive models can automate the
auction process, reducing human intervention and enhancing
transaction efficiency and fairness. This automation can lead to
more reliable and tamper-proof transactions, promoting wider
adoption and trust in IoT ecosystems. Furthermore, continu-
ous advancements in blockchain scalability and security can
further optimize these mechanisms, making them more robust
and adaptable to various IoT applications.

D. Comparative Analysis of Incentive Mechanisms

Advantages: Each mechanism offers unique strengths tai-
lored to specific IoT applications. SV-based mechanisms pri-
oritize fairness, ideal for collaborative environments where
contribution-based rewards are essential. Stackelberg game-
based mechanisms are best suited for structured IoT systems
with hierarchical dynamics, leveraging the leader-follower
paradigm for optimized decisions. Auction-based mechanisms,
by contrast, offer high flexibility and efficiency, making them
advantageous in competitive resource allocation scenarios.

Challenges: Despite their advantages, each mechanism
faces unique challenges. Shapley value-based mechanisms are
computationally intensive, especially when dealing with large-
scale IoT networks. Stackelberg game-based models require
intricate design and precise behavioral assumptions, making
them difficult to implement in real-world scenarios with in-
complete information. Auction-based mechanisms, while ef-
ficient, can lead to speculative behaviors, which may reduce
system stability and increase operational costs.

Future Development: The future potential of these mech-
anisms depends on technological advances. SV-based mecha-
nisms can achieve better scalability through distributed com-
puting and refined contribution assessment. For Stackelberg
game-based mechanisms, incorporating reputation and Al-
driven optimization introduces more robustness. Auction-
based mechanisms can benefit from blockchain integration,
using smart contracts to enforce rules and enable automated,
transparent, and secure transactions.

VII. CONCLUSION

In this survey, we explored the application and poten-
tial of blockchain-based incentive mechanisms in the Inter-
net of Things. We categorized these mechanisms into three
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main types: Shapley value-based, Stackelberg game-based, and
auction-based. Each type’s theoretical foundations, modeling
processes, and current IoT applications were summarized.
We highlighted how these mechanisms can transform I[oT
applications by fostering greater collaboration and enabling
more secure and efficient systems. With ongoing development
and refinement, these mechanisms are poised to realize their
full potential across diverse IoT scenarios, driving innovation
and enhancing the functionality of IoT ecosystems.
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