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Abstract—Collaboration through knowledge sharing is critical
for the success of intelligent fault diagnosis in a complex Industrial
Internet of Things (IIoT) system that comprises various inter-
connected subsystems. However, since the subsystems of an IIoT
system may be owned and operated by different stakeholders,
sharing fault diagnosis knowledge while preserving data security
and privacy is challenging. While decentralized data exchange
has been proposed for cyber-physical systems and digital twins
based on the Web 3.0 paradigm, decentralized knowledge sharing
in knowledge-based intelligent fault diagnosis is less investigated.
To address this research gap, we propose a Web 3.0 applica-
tion for collaborative knowledge-based intelligent fault diagnosis
using blockchain-empowered decentralized knowledge inference
(BDKI). Our proposed mechanism enables workers to self-evaluate
their ability to contribute to the knowledge inference with their
local knowledge graphs. The knowledge-sharing requestor can then
choose a worker with the best evaluation result and initiate collab-
orative training. To demonstrate the efficiency and effectiveness
of BDKI, we evaluate it using well-known datasets. Results show
that BDKI delivers a favorable inference model with higher overall
accuracy and less training effort compared to inference models
trained using conventional knowledge inference with random train-
ing sequences.

Index Terms—Industrial Internet of Things (IIoT), fault
diagnosis, decentralized knowledge inference, Web 3.0.
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I. INTRODUCTION

THROUGH the integration of computing, communication,
and control, the Industrial Internet of Things (IIoT) es-

tablishes connections among machines, computers, and people,
enabling intelligent industrial operations with heightened au-
tomation. This integration has ushered in a new era of safe,
collaborative, robust, and efficient production across various
industries. However, serious safety incidents might happen due
to machine malfunctions, mistaken actions, or cyber-attacks.
Consequently, ensuring the reliability of IIoT systems is imper-
ative to safeguard industrial processes and maintain operational
integrity. Among the various strategies employed to enhance
IIoT system reliability, fault diagnosis has emerged as a focal
point of research and innovation, drawing considerable attention
from both academia and industry. Meanwhile, the advent of
Big Data and machine learning has given impetus to the era of
intelligent fault diagnosis. For example, using neural networks
to differentiate faulty conditions from normal conditions and
automatically spot early signs of equipment failure allows main-
tenance decisions to be optimized over different time horizons,
such as weeks or months, to ensure timely and cost-efficient
part procurement and/or maintenance personnel assignments.
Therefore, intelligent fault diagnosis provides much safer and
more efficient approaches to enhance the reliability of IIoT
systems.

A key factor in the success of intelligent fault diagnosis is
the comprehensive cognition of the overall system status and
data completeness. Since complex IIoT systems have evolved
to encompass decentralized and spatially distributed but in-
terconnected subsystems, a failure observed in one subsystem
may have underlying relations with other failures observed in
another subsystem. Thus, fault detection and countermeasures
may need to be taken across different subsystems to ensure the
normal operation of the overall system. While each subsystem
may have local measurements and local fault diagnosis models
specifically designed and implemented to make fault diagnosis
or maintenance decisions, the fault diagnosis result of the overall
system should take into account of all relevant localized diag-
nosis results, such as those achieved through a consensus-based
algorithm. Furthermore, manually designing simulation cases
to capture all types of faults by any subsystem owner alone is a
challenging task owing to the complexity and dynamism of the
underlying subsystems or knowledge gaps. Thus collaboration
through knowledge sharing is beneficial for more comprehensive
intelligent fault diagnosis in IIoT systems [1].
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However, collaborative efforts have brought about a series of
privacy and security challenges, especially when IIoT subsys-
tems are operated by different stakeholders. These challenges
may be overcome by requiring the entire system to comply
with the decentralized requirements of the Web 3.0 paradigm,
which encompasses a series of technologies such as blockchain,
consensus algorithms, and smart contracts to ensure that mul-
tiple parties participating in a system can collaborate without
central control and mutual trust. The Web 3.0 paradigm has been
proposed for data exchange among decentralized autonomous
organizations to ensure security and privacy in cyber-physical
systems and digital twins [2], [3], [4] residing in IIoT systems.
Thus, we envision a decentralized intelligent fault diagnosis over
Web 3.0 for IIoT systems. That is, after each subsystem has made
its own fault diagnosis decisions using its own fault diagnosis
knowledge, it may exchange its fault diagnosis knowledge with
others through a transparent medium such as the blockchain,
achieving a collaborative fault diagnosis that is more practical
for future intelligent fault diagnosis in IIoT systems.

Nevertheless, the lack of interoperability between fault di-
agnosis techniques of different subsystems in IIoT systems
due to heterogeneous data collected from different sensors,
equipment, or industrial processes makes collaborative intelli-
gent fault diagnosis challenging. To overcome this challenge,
knowledge-based intelligent fault diagnosis has emerged as
the most recent research trend, where collected fault diagnosis
knowledge can be maintained in a universal knowledge base
(KB). In particular, knowledge-based intelligent fault diagnosis
that leverages a KB represented by knowledge graphs that is well
known for their ability to handle highly heterogeneous data and
ensure interoperability has become the state of the art [5], [6]. A
knowledge inference method utilizing a distributed knowledge
representation learning algorithm that embeds several knowl-
edge graphs into a continuous vector space for knowledge
inference was investigated in [7]. Knowledge can be shared
by sharing the trained reasoning model that contains the vector
space without directly sharing the data. However, in that study,
knowledge representation learning was performed on carefully
partitioned knowledge graphs, whereas individual fault knowl-
edge graphs are usually constructed and maintained indepen-
dently by each subsystem in IIoT systems. Thus, conventional
distributed knowledge inference algorithms that focus on dataset
decomposition and parameter aggregation are insufficient for
accomplishing distributed knowledge inference for intelligent
fault diagnosis in IIoT systems. The authors in [8] proposed a dis-
tributed knowledge inference framework that overcomes this ob-
stacle. The proposed framework uses a centralized coordinator
to handle the distributed training, thereby allowing participants
to train a reasoning model with their local knowledge graphs
continuously without any dataset manipulation. However, the
proposed framework still relies on a central control unit, and the
trustworthiness of the central coordinator could become a key
concern among diverse stakeholders in IIoT systems to adopt
the proposed framework. To our best knowledge, studies on
decentralized knowledge inference over Web 3.0 are still lacking
in the literature.

Fig. 1. Collaborative knowledge sharing among participants. (a) Subsystem 1
requesting a knowledge sharing task. (b) Subsystem 2 requesting a knowledge
sharing task.

To bridge the research gap identified above, we extend
the aforementioned distributed knowledge inference frame-
work [8] by proposing a Web 3.0 application that incorporates
a blockchain-empowered decentralized knowledge inference
(BDKI) mechanism for intelligent fault diagnosis in IIoT sys-
tems. In our proposal, after one participant has requested a
knowledge sharing task as the requestor, other participants may
help complete the knowledge sharing task with their local knowl-
edge graphs as workers. Since more than one worker may have
valuable knowledge in their local knowledge graphs as illus-
trated in Fig. 1, we formulate the BDKI paradigm as an iterative
collaboration process. Specifically, when a knowledge-sharing
request is published through the request matching interface by a
knowledge sharing requestor, a group of workers would evaluate
their ability to contribute to the request with a newly proposed
task evaluation function. The requestor then chooses one worker
with the best evaluation result and initiates a round of training.
The requestor may attempt to further improve its reasoning
model by picking a worker with the second-best evaluation result
and initiating another round of training. The process continues
until the requestor is satisfied or all the workers have joined
the iterative knowledge inference process once. Since there is
no central control in the proposed mechanism, the blockchain-
based system ensures openness, scalability, anonymity, security,
and reliability for the knowledge sharing of intelligent fault
diagnosis in IIoT systems.

We conducted empirical studies to prove that the proposed
BDKI mechanism can deliver a reasoning model that outper-
forms most reasoning models trained by the distributed reason-
ing method with random training sequences proposed in [8].
Specifically, we use a fault knowledge graph of a real industrial
process, namely the Tennessee Eastman (TE) process, to show
that the proposed mechanism can work with practical IIoT sys-
tems. Additionally, we use FB15K-237 and WN18RR datasets
to show that the proposed mechanism can scale up to large-scale
knowledge graphs. Furthermore, we use the WN18RR dataset
to show that the proposed mechanism can deliver a reasoning
model that has a high overall accuracy with less training effort.
In summary, the contributions of this work are as follows:
� To the best of our knowledge, this is the first study to

propose a BDKI mechanism for intelligent fault diagnosis
in IIoT systems.
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� We present a novel Web 3.0 application for decentral-
ized knowledge-based intelligent fault diagnosis, with
a task evaluation function that provides usable and
practical references for the workers to estimate their possi-
ble contributions, enabling the requestor to select a worker
for collaborative training according to the evaluation re-
sults. This application can be be practically realized for
modern IIoT systems in general, especially those with
diverse stakeholders;

� With empirical study, we show that the proposed BDKI
mechanism is efficient and effective. Therefore, the pro-
posed Web 3.0 application is both useful and beneficial for
distributed IIoT systems.

The rest of this article is organized as follows. Related works
are reviewed in Section II. The proposed model and methodol-
ogy are described in Section III. Evaluation results are presented
in Section IV.

II. RELATED WORK

A. Knowledge-Based Intelligent Fault Diagnosis in IIoT
Systems

Measured signals (e.g., vibration, noise, or pressure) of me-
chanical components can be analyzed and compared to prior
knowledge obtained from healthy systems to identify faulty
symptoms [9]. Also, the characteristics of a system can be
learned through machine learning algorithms. For example,
authors in [10] constructed a classification and regression tree to
find the deciding thresholds of the features to diagnose faults in a
variable refrigerant flow system. Moreover, studies have shown
that different maintenance requirements need to be analyzed
from different kinds of signals, and maintenance actions could
be determined with different maintenance expectations, such as
weeks or months before predicted failure. For instance, a mul-
tiple classifier approach is proposed in [11] to identify integral
type faults from machine failures due to wear and tear effects
of usage and stress on equipment parts. Different maintenance
management results are assigned to different classifiers, such as
SVM or K-nearest neighbor, to identify maintenance require-
ments and minimize expected costs. Intelligent fault diagnosis
is found to be a cost-effective and compelling approach to ensure
the reliability of IIoT systems.

However, machine learning algorithms need to be carefully
designed for different fault types of different components. To
overcome this obstacle and accomplish fault diagnosis at the
system level, knowledge-based intelligent fault diagnosis has
become the state of the art for IIoT systems [1]. Whereas
data-driven approaches such as machine learning approaches
can detect and locate component failures, knowledge-based
intelligent fault diagnosis is particularly well suited for complex
or multi-element systems/processes for which detailed mathe-
matical models are not available. Typically, a knowledge-based
intelligent fault diagnosis system consists of a KB with observa-
tions and knowledge embedded in experiences. Knowledge such
as the root-cause investigation and the fault recovery process
can be maintained in the KB for efficient decision-making at the

system level. Meanwhile, an inference engine in the knowledge-
based intelligent fault diagnosis applies reasoning methods to
the known facts in order to help reveal any unknown or indirect
relation between the system behavior and a faulty state of the
system.

To ensure interoperability of the knowledge-based intelligent
fault diagnosis, ontologies conceptualize the domain knowledge
with its properties and relations by defining the classes of objects
with nouns. For example, the authors of [12] defined four classes
in the fault diagnosis ontology model for loaders: FaultMode
with two subclasses, namely FaultCause and FaultEffect; Fault-
Equipment, indicating the location of faults; FaultMaintenance,
describing the fault repair methods; and Parameters, expressing
the data collected by sensors. In addition, real observations re-
garding the individual causes and symptoms of, and maintenance
actions in response to, a fault can be added to create a knowledge
graph, which is a new type of knowledge representation [13].
A knowledge question-and-answer system for fault diagnosis
based on knowledge graphs was established in [14]. As complex
IIoT systems have evolved to encompass decentralized and
spatially distributed but interconnected subsystems, how to share
data among various stakeholders has become a concern. Uti-
lizing the decentralization technique of the Web 3.0 paradigm,
security, anonymity, scalability, and reliability can be ensured for
data exchange among decentralized autonomous organizations.
Researchers have investigated distributed knowledge-based in-
telligent fault diagnosis with independent knowledge graphs
constructed and maintained in each subsystem of the IIoT sys-
tem [8]. But central control is still required in their work. In this
work, we focus on decentralized knowledge-based intelligent
fault diagnosis over Web 3.0 with distributed knowledge graphs,
which is more practical than previous approaches.

B. Distributed Knowledge Inference

The effectiveness of knowledge-based intelligent fault diag-
nosis using knowledge graphs depends on the completeness
and correctness of the knowledge graphs. The inference en-
gine in the knowledge-based intelligent fault diagnosis adopts
reasoning methods to infer new conclusions and derive new
relations among entities in order to enrich the knowledge graphs.
Ontologies and their object properties can be expressed with
the resource description framework (RDF) schema. Then, a
knowledge graph is constructed with RDF triples. TransE, an al-
gorithm that translates entities and relations to low-dimensional
expressions in the embedding space, was originally proposed
in [15]. Furthermore, chains of reasoning can be expressed by
paths in the graph. Thus, knowledge graphs can be analyzed
as graphs with graph topology algorithms. A reasoning method
with knowledge inference was proposed in [16]. It uses rein-
forcement learning (RL) with pre-trained embeddings to predict
if a head entity and a given tail entity have a relation. The path
searching problem was formalized in [17] as a partially observed
Markov decision process using RL to predict the tail entity given
the head entity and the relation.

Meanwhile, distributed knowledge inference has been studied
to tackle the scalability, performance, and KB isolation issues.
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Fig. 2. Workflow of Proposed Mechanism.

In [18], the translation of embedded expressions of knowledge
graphs was transformed into distributed ones to resolve the
efficiency issue. In [7], a distributed translation of embedding
learning was proposed to further improve the approach proposed
in [18] by carefully designing the partition of the edges and ver-
tices of the knowledge graph. Nevertheless, distributed knowl-
edge inference based on local knowledge graphs maintained
by different participants did not attract much research attention
until a distributed path-based reasoning algorithm was proposed
in [8]. However, their work involves a central coordinator that
coordinates the collaborative training process, which introduces
a single point of failure and privacy problems. In this work, we
focus on decentralized knowledge inference that is more secure
and privacy-preserving.

III. SYSTEM MODEL AND METHODOLOGY

In this section, we introduce the proposed BDKI mechanism
for knowledge-based intelligent fault diagnosis with a knowl-
edge graph in IIoT systems.

A. System Overview

The overall system architecture of our Web 3.0 application
is shown in Fig. 2. we propose to incorporate a blockchain-
empowered request matching interface implemented as a smart
contract for requestors and workers in the system to publish,
browse, and match knowledge requests among the participants.
Consider an M -participant IIoT system, each participant main-
tains a reasoning model that embeds its local knowledge graph
and tries to complete the reasoning model with a BDKI mecha-
nism. A BDKI process starts when a participant m requests as-
sistance from other participants to complete its reasoning model
that embeds the local knowledge graph. As a task requestor,
the participant m publishes a task through the blockchain-
empowered request matching interface. The other participants
can browse published tasks through the request matching inter-
face and evaluate a task by evaluating their abilities to complete

the requestor’s reasoning model with a task evaluation protocol.
Then, they will submit their task evaluation results in a proposal
through the request matching interface as workers. The requestor
will choose which proposal to accept. Then, the request match-
ing interface will notify the worker whose proposal is accepted
by the requestor. Upon receiving the notification, the worker
will start performing the knowledge inference task with its local
knowledge graph. Finally, the requestor will retrieve the result
with the URL submitted through the request matching interface,
which concludes a round of BDKI training. If the requestor wants
to know if the other participants can help complete its reasoning
model further, it will pick another worker from the submitted
proposals and start a new round of training until it is satisfied.

The proposed mechanism utilizes the blockchain for message
exchange, which enables a scalable and open system. Further-
more, it leverages a distributed knowledge inference based on
path-based reasoning and RL proposed in [8]. Furthermore,
there are two major problems that must be addressed: 1) how
should workers evaluate if they can help complete the requestor’s
reasoning model? 2) how should the requestor choose a worker?
In the next section, we will briefly introduce the distributed
knowledge inference algorithm and address the aforementioned
problems by introducing the task evaluation protocol and pro-
posal evaluation for the requestor in detail.

B. Methodology

As more than one participant (i.e., workers) may have valuable
knowledge that could help the requestor to improve the local
knowledge graph, after receiving the trained reasoning model
from one worker, the requestor may choose another worker and
start a new round of training to see if any other participants could
help further improve its reasoning model.

For the participantm, we denote the local knowledge graph as
Bm, the set of embeddings of entities inBm as Em, and the set of
embeddings of relations in Bm as Rm. Then, knowledge graphs
of all participants are denoted by B = {B1, . . . ,BM}. More
specifically, each local knowledge graph Bm is composed by a
collection of triples (em,n1

, rm,n, em,n2
) where em,n1

, em,n2
∈

Em respectively denote the embeddings of entities n1 and n2

in Bm, and rm,n ∈ Rm denotes the embedding of relation n
in Bm. The triples in each Bm are modeled by a directed
labeled multigraph Gm = (Vm, Em,Rm), where entities in Em
are modeled by vertices Vm and rm,n is represented as an edge
in the graph Em.

1) Distributed Path-Based Reasoning Algorithm: In [8], a
distributed knowledge inference framework was proposed with
a path-based reasoning algorithm based on RL. After training
its reasoning model with a reasoning agent, the proposed frame-
work allows participants to record the entities along the paths
with the original query as a handover query HQm. By sharing
the handover queries with other participants, the distributed
reasoning agent can connect links across knowledge graphsB to
address scattered reasoning path problems. It has been proven
that participants with small knowledge graphs can benefit signif-
icantly from the proposed distributed reasoning framework by
initiating training and asking other participants to continue the
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training using their local knowledge graphs with the handover
queries. Thus, in this work, we apply the distributed knowledge
inference framework proposed in [8] to our BDKI mechanism.
The participant trains its reasoning model with a local knowledge
graph and hands over its queries to the other participants in the
IIoT system as the requestor, while the others are the workers.
Specifically, the reasoning process is a deterministic partially
observed Markov decision process. During training, the partici-
pant can only observe the head entity em,q1 and relation rm,q of
the query triple, and its current location etm per step t. The answer
of the query triple, em,q2 remains hidden. The observation of the
reasoning agent of participant m with Bm at time step t is then
derived as

Ot
m = (etm, em,q1 , rq,n) (1)

The state space of the reasoning agent of participant m consists
of all valid combinations in Em ∗ Em ∗ Rm ∗ Em. The reasoning
agent will choose from the state space at time step t. Thus, the
state of the agent at time step t is denoted as

St
m = (etm, em,q1 , rm,q, em,q2) (2)

The set of possible actions of the agent of participant m at time
step t that consists of all the outgoing edges of the vertex etm in
graph Gm are derived as

At
m = {(etm, r, v)∈Em|r∈Rm, v∈Vm, (etm, r, v)∈Gm} (3)

A path is formed as the reasoning agent transits from one state
to the next by selecting an edge and walking to the incident
vertex from the current vertex. All the path histories are stored
in a long short-term memory (LSTM) based recursive neural
network (RNN) network and a two-layer feedforward network
that helps the agent to choose from the possible actionsAt

m. The
transition function can be formulated as

δ(St
m, At

m) = (v, em,q1 , rm,q, em,q2), v ∈ Vm (4)

Specifically, the LSTM network stores the sequential histories
to encode the path history Ht−1

m , the actions an agent has
taken At−1

m , and the observation Ot
m, as Ht

m, where Ht
m =

(Ht−1
m , At−1

m , Ot
m). Then, based on the history, the policy net-

work chooses an action atm from a probability distribution over
all available actions dtm conditioned on the query relation rm,q ,
where

dtm = softmax(At
m(Wm2ReLU(Wm1[h

t
m;Ot

m; rm,q])))
(5)

atm ∼ Categorical(dtm) (6)

A reward is given if the answer entity is reached at step T . Given
the state at step T is ST

m = (eTm, em,q1 , rm,q, em,q2), the reward
is calculated as

Reward(ST
m) =

{
1, eTm = em,q2

0, else.
(7)

Finally, the reward is evenly split among the states on the path
within T time steps. The model parameter is trained and updated
during back-propagation.

Algorithm 1: ParticipantmTrains its own Reasoning Model
as Requestor.

Then, the handover queries, HQm, are derived as

HQm = ([etm]Tt=1, em,q1 , rm,q, em,q2) (8)

where Ehq can represent the set of embeddings of entities in
HQm.

The handover query is sent to the selected worker in the IIoT
system. A worker that receives a handover query checks if the
handover entities ehq ofHQm exist in its KB. Using eti to denote
the corresponding handover entity found in theBi by participant
i, with the original query em,q1 , rm,q, em,q2 , the state space of
agent i is,

St
i = (eti, em,q1 , rm,q, em,q2) (9)

Let auc0 denote the initial overall accuracy that the requestor
achieved after training with its local knowledge graph. When a
requestor publishes a task, it shares the trained policy network
RNNm, the handover queries HQm, and the initial overall
accuracy auc0 with the request matching interface. The overall
algorithm is summarized in Algorithm 1. Specifically, the time
complexity of the Algorithm 1 is O(n), where n is the number
of episodes set for the experiment.

2) Task Evaluation for Workers: Other participants i perform
as workers (i.e., worker i) to evaluate the published task. In this
section, we describe the task evaluation protocol for the worker
i with i ∈ {1, . . . ,m− 1,m+ 1, . . . ,M}.

Each worker i evaluates how confident it is to help the re-
questor improve its reasoning model with its local knowledge
graph with the handover queries of published tasks. Let CIi
denote worker i’s confidence indicator withCI = [CIi]

M
i=1,i �=m.

The Iverson bracket of a statement is the indicator function
of the set of values for which the statement is true. For entity
ei,n ∈ Ei in worker i’s knowledge graph and ehq ∈ Ehq inHQm,
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the statement of Iverson bracket [ei,n = ehq] is

[ei,n = ehq] =

{
1, ei,n = ehq

0, otherwise.
(10)

Define the number of equal entities in Ei and Ehq as

C(ehq, i) =

|Ei|∑
n=1

[ei,n = ehq] (11)

where |Ei| represents the number of entities in Ei.
The path-based reasoning algorithm can be regarded as a

path-searching problem based on a path ranking algorithm
(PRA). In this context, knowledge graphs are analyzed as graphs
utilizing graph topology algorithms, where subjects and objects
are treated as vertices, and predicates represent the paths linking
these vertices. PRA facilitates a random walk on the graph,
collecting paths starting from the head entity h and conclud-
ing at the specific entity t within predefined lengths. During
collaborative training, it is imperative to locate the handover
entity ehq within the worker’s local knowledge base. Failure
to do so leaves the reasoning agent stuck in a state where no
next vertex can be found, resulting in no earned reward. To
mitigate this, it is crucial for the requestor to select a worker
with more overlapping entities, allowing the worker to identify
additional handover entities ehq in its knowledge base. This
approach enables the worker to construct a path by connecting
more links across knowledge bases. Essentially, the reasoning
agent’s training goal is to ascertain whether the end entity em,q2

can be found while traversing paths within the knowledge graph.
In the realm of graph search methods, depth-first search and
breadth-first search are well-known techniques. Unlike other
path-searching methods, such as the Dijkstra shortest path algo-
rithm, A* algorithm, or Yen’s algorithm, which prioritize finding
the shortest path, the depth-first search and breadth-first search
methods are particularly suited for our scenario. Therefore, in
this study, we incorporate these methods into the task evaluation
framework for workers.

Defined as the depth-first search, the confidence indicator of
worker i is

CIi =
C(ehq, i)

|HQm| . (12)

By contrast, a breadth-first search ensures that new knowledge
is learned first. For the breadth-first search, the confidence
indicator of worker i is

CIi = 1− C(ehq, i)

|HQm| . (13)

During training, the requestor compiles handover queries
and distributes them to other participants for task evaluation.
Subsequently, the requestor selects a participant as the worker
for the next round of training based on confidence indicators.
Once chosen, the participant initiates training the reasoning
model using the distributed reasoning algorithm. Because all
workers utilize the identical set of handover queries, there is no
requirement for them to reassess the queries after each round.
This uniformity in the training process enhances efficiency and

Algorithm 2: Participant i Evaluates the Task and Train the
Model if Selected as Worker.

consistency across evaluations. The overall algorithm is sum-
marized in Algorithm 2. The time complexity of the function
CalculateConfidentIndicator is O(n), where n is the number of
handover triples. Similarly, the time complexity of the training
process is O(n), where n is the number of episodes set for the
experiment. In this work, we assume all workers are honorable
and that they evaluate truly with their local knowledge graph
and submit the result without any manipulation.

3) Proposal Evaluation for Requestor: After a requestor
trains its reasoning model with its local knowledge graph, it will
initiate a new collaborative training if it is not satisfied with the
initial training result. To obtain a reasoning model that has higher
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overall accuracy with less training effort, a rational requestor will
choose the worker with the best evaluation result first. Then, if
the requestor still wants to see if other participants could help
improve its reasoning model further, it will choose the worker
with the second-best evaluation result. That is, the requestor will
choose the worker with a greedy approach according to their
evaluation results. Let

PO = {PO1, PO2, . . ., POm} (14)

be the set of proposals received from workers. Let POs(n) be
the nth order statistics of the proposals,

POs(n) = max
{
POs1, POs2, . . ., POsn}, (15)

where PO(s1) is the proposal with the highest confident indi-
cator, POk

(s2) is the proposal with the second highest confident
indicator, and PO(sn) is the proposal with the lowest confident
indicator. Then, for a new round k, the requestor will choose the
worker with the proposal POs(k).

The proposed BDKI methodology utilizes a task evaluation
function for participants to evaluate their possible contributions
to the knowledge inference task. Then, the requestor will choose
a participant as the worker to initiate a round of training accord-
ing to their evaluation results. In such a manner, participants are
aligned with the ability to contribute to the knowledge inference
task and could join the iterative training process in a specific
order. Furthermore, the iterative training process stops as the
requestor is satisfied with the training result or all participants
have trained the requestor’s model, which mimics the behavior
of the real world. Thus, the proposed methodology is rational.

IV. EVALUATIONS

In this section, we describe our evaluations of the proposed
mechanism. First, we use a fault knowledge graph constructed
from the TE process [19] dataset to show that the proposed
mechanism is feasible for IIoT systems. Then, we use large
open-source datasets, namely FB15K-2371 and WN18RR,2 to
show that the proposed method is feasible with large-scale
datasets. The results indicate that compared to the conven-
tional distributed knowledge inference methodology with ran-
dom training sequences proposed in [8], the proposed BDKI
mechanism allows participants to join the collaborative training
in a specific order that delivers satisfactory training results.
Furthermore, we use the open-source dataset WN18RR to show
that the proposed mechanism can produce a reasoning model
with higher overall accuracy and less training effort; hence, it is
beneficial and adoptable for participants in IIoT systems.

A. Datasets

The TE process describes a real industrial process that in-
cludes five processing units: a reactor, a condenser, a recycle
compressor, a vapor/liquid separator, and a product stripper.
Eight chemical components, A–H, undergo a chemical process
dominated by the processing unit. Further, 20 fault types and

1[Online]. Available: https://developers.google.com/freebase
2[Online]. Available: https://wordnet.princeton.edu/

TABLE I
DATASETS

Fig. 3. Network structure. Adapted from [8].

54 system properties (12 manipulated input variables and 42
measured output variables) of the process are measured using
IoT devices; e.g., flow rates, pressure, temperatures, and levels.
The TE process dataset is widely used as a benchmark for
evaluating process diagnosis methods [20]. In this work, we
use the fault knowledge graph constructed from the TE process
dataset in [8] to demonstrate the feasibility of the proposed
mechanism for IIoT systems.

Furthermore, two well-known open-source knowledge graphs
are used in our evaluation: FB15K-237, a subset of Freebase
introduced in [15]; WN18RR, a subset of WordNet introduced
in [21]. Table I summarizes the number of triples, relations, and
entities of each dataset.

B. Experiment Setup

We used Python3 to implement the functionalities of the re-
questor, worker, and request matching interface in the requestor,
worker, and request matching interface objects, respectively.
Also, we implemented our distributed reasoner for the requestor
and worker using Tensorflow.4 Specifically, we implemented the
reasoner using the policy network model illustrated in Fig. 3,
which is adapted from [8]. The implemented models and func-
tionalities are deployed on a cloud instance that has 16 core CPU
and 32G memory. During each experiment, a requestor, several
workers, and a request matching interface were run separately
and independently to realize the decentralization of Web 3.0
applications. Then, we evaluated our BDKI methodology using
the TE process fault knowledge graph and the open-source
datasets FB15K-237 and WN18RR. The datasets were split into
sub-KBs for each participant. Then, we closely followed the
experimental setup in [8] and set the training parameter T , i.e.,
the number of steps in which the correct answer is reached, to
3. We presented the accuracy of the reasoning model trained by
our BDKI with HITS@1, 3, 5, 10, 20, and mean reciprocal rank
(MRR), the performance metrics used in knowledge inference
tasks, as well as in [8]. Specifically, Hit@N measures the fraction

3[Online]. Available: https://www.python.org/
4[Online]. Available: https://www.tensorflow.org/

https://developers.google.com/freebase
https://wordnet.princeton.edu/
https://www.python.org/
https://www.tensorflow.org/
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TABLE II
DATASET OF EACH PARTICIPANT FOR TE PROCESS DATASET

of correct answers that rank in the top N of the returned possible
responses to queries. MRR evaluates the multiplicative inverse
of the rank of the first correct answer to queries. Furthermore,
we assumed all participants are collaborative participants and
they will evaluate their ability to contribute to the decentralized
training truthfully.

C. Numerical Evaluations on TE Process Dataset

The proposed decentralized reasoning methodology allows
participants to join the iterative reasoning process in a train-
ing sequence that delivers favorable training results. To show
that the proposed methodology is feasible for IIoT systems, in
this section, we use the TE process fault knowledge graph to
demonstrate that the reasoning model trained by the proposed
decentralized methodology can achieve higher accuracy that is
interpreted with different performance metrics. Specifically, we
split the dataset TE Process into four sub-KBs; the numbers of
triples and entities involved in each sub-KB are summarized in
Table II. We assume that there are four participants (Participant
A, B, C, D) in the IIoT system and assign each participant a
sub-KB. Then, assuming that all the participants are collab-
orative participants, we let Participant A initiate the training
processes and compare the accuracy of the reasoning model
obtained from the training sequence generated by the proposed
decentralized reasoning methodology with that of the reasoning
models obtained from random training sequences.

Fig. 4 shows the result of Participant A’s full iterative train-
ing process with Participant B, C, and D trained in different
sequences. Specifically, with Participant A as the requestor,
Fig. 4 shows the change of different performance metrics as
the reasoning model is trained as more rounds of training go
on and more workers are involved. As the reasoning model
trained after each round of training is a complete model to be
used by Participant A in fault diagnosis, we accept the model
with the best result as the final trained model of the proposed
decentralized reasoning mechanism to show that our mecha-
nism outperforms conventional distributed reasoning methods
with random training sequences. Specifically, the best Hit@1
and Hit@3 achieved by the depth-first and breadth-first search
sequences are higher than those achieved by training sequences
from other combinations of Participant B, C, and D, as shown
in Fig. 4(a) and Fig. 4(b). The best Hit@5 achieved by the
breadth-first search sequence is higher than that achieved by
the other training sequences. However, the best Hit@5 achieved
by the depth-first search sequence is slightly lower than that
achieved by the training sequence ADCB, while it is higher
than that achieved by the other training sequences, as shown
in Fig. 4(c). For Hit@10 shown in Fig. 4(d), the result of the

TABLE III
DATASET OF EACH PARTICIPANT FOR FB15K-237

TABLE IV
DATASET OF EACH PARTICIPANT FOR WN18RR

depth-first search sequence is higher than that achieved by the
other training sequences. Meanwhile, the result of the breadth-
first search sequence is equivalent to the result of the training
sequence ADCB and higher than that of the other training
sequences. For Hit@20 shown in Fig. 4(e), the result of the
depth-first search sequence is equivalent to that of the training
sequence of ADCB but higher than that of the other training
sequences. Finally, for MRR shown in Fig. 4(f), the result of the
breadth-first search sequence is higher than that of the other
training sequences, while the result of the depth-first search
sequence is equivalent to that of the training sequence ADCB
and higher than that of the other training sequences. For the TE
process dataset, the reasoning model obtained by the proposed
decentralized reasoning mechanism outperforms the models
obtained by the conventional distributed reasoning method with
a random training sequence. In addition, the breadth-first search
sequence outperforms the depth-first search sequence for the TE
process dataset.

D. Numerical Evaluations on Open-Source Datasets

To show that the proposed methodology is feasible for
large-scale knowledge graphs, we use the open-source
knowledge graphs FB15K-237 and WN18RR to demonstrate
that the proposed BDKI methodology delivers a reasoning
model with high overall accuracy compared to most reasoning
models trained by conventional distributed knowledge inference
methods with random training sequences. Here, we split the
open-source knowledge graphs into eight sub-KBs; the numbers
of triples and entities involved in each sub-KB are summarized
in Tables III and IV. The FB15K-237 dataset contains a total of
14541 entities, as shown in Table I. The smallest sub-KB of the
FB15K-237 dataset contains 9079 entities, i.e., 62.4% of the
total number of entities in this dataset. The remaining sub-KBs
of the FB15K-237 dataset contain entities that account for 80%
to 89.6% of the total number of entities in this dataset. Thus, the
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Fig. 4. Comparison of the reasoning models with different performance metrics: (a) Hit@1; (b) Hit@3; (c) Hit@5; (d) Hit@10; (e) Hit@20; (f) MRR.
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Fig. 5. Comparison of MRR between the proposed mechanism and random training sequences of FB15K-237 dataset.

number of intersections of the entities among the sub-KBs may
be large. Meanwhile, the WN18RR dataset has more entities
but fewer relations. The WN18RR dataset contains a total of
40559 entities, as shown in Table I. The smallest sub-KB of the
WN18RR dataset contains 12029 entities, i.e., 29.7% of the total
number of entities in this dataset. The remaining sub-KBs of the
WN18RR dataset contain entities that account for 54% to 71%
of the total number of entities in this dataset. Hence, the number
of intersections of the entities among the sub-KBs may be small.

FB15K-237: The MRR evaluates the multiplicative inverse
of the rank of the first correct answer to the queries. As it
is critical for a fault diagnosis system to produce the most
relevant fault diagnosis knowledge (e.g., the fault root causes),
we evaluate the performance of our BDKI using MRR as the
overall accuracy measure in this section. Fig. 5 compares the
MRR of reasoning models trained by the depth-first search
sequence and the breadth-first search sequence with those of
reasoning models trained by 20 random training sequences for
the FB15K-237 dataset. The result shows that the breadth-first
search sequence outperforms the depth-first search sequence on

the FB15K-237 dataset. Furthermore, the breadth-first search
sequence outperforms most of the random training sequences.
Specifically, for Participant A, the MRR of the reasoning model
trained by the breadth-first search sequence is higher than the
MRR of 18 models,i.e., 90% of the reasoning models trained by
random training sequences. The MRR of the reasoning model
trained by the depth-first search sequence is higher than the
MRR of 4 models, i.e., 20% of the reasoning models trained by
random training sequences. Among the 18 reasoning models, the
MRR of the reasoning model trained by the breadth-first search
sequence is 8% to 10% higher than that of 4 (22.2%) reasoning
models trained by random training sequences, and 4% to 5%
higher than that of 10 (55.6%) reasoning models trained by ran-
dom training sequences. For Participants B and C, the MRR of
the reasoning model trained by the breadth-first search sequence
is higher than that of 12 and 13 models, respectively, i.e., 60%
and 65% of the reasoning models trained by random training
sequences. For Participants D and E, 17 models, i.e., 85% of
the reasoning models trained by random training sequences, are
outperformed by the reasoning model trained by the breadth-first
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Fig. 6. Comparison of MRR between the proposed mechanism and random training sequences of WN18RR dataset.

search sequence. The MRR of 6 (35.3%) reasoning models
trained by random training sequences are exceeded by the MRR
of the reasoning model trained by the breadth-first search se-
quence by around 5% to 7% for Participant D, where 7 (41.2%)
of those reasoning models are outperformed by around 3% to 5%
for Agent E. Furthermore, the results of the breadth-first search
sequence for Participants F, G, and H follow a similar trend.
All 20, i.e., 100% of the reasoning models, trained by random
training sequences are outperformed by the model trained by the
breadth-first search sequence. The proportion exceeded varies
from 2% to 5%. In summary, the breadth-first search of the
proposed BDKI mechanism achieves favorable training results
compared to the generalized distributed knowledge inference
mechanism with random training sequences for the FB15K-237
dataset. It is as expected since the number of overlapping entities
among the sub-KBs is large.

WN18RR: The depth-first search should be more effective
for the proposed BDKI mechanism for the WN18RR dataset
since the number of overlapping entities among the sub-KBs
is small. Fig. 6 compares the MRR of the reasoning models

trained by the depth-first search sequence and the breadth-first
search sequence with those of 20 reasoning models trained
by random training sequences for the WN18RR dataset. The
result shows that the depth-first search performs better on the
WN18RR dataset compared to the FB15K-237 dataset, as ex-
pected. Specifically, the reasoning model trained by the depth-
first search sequence outperforms 19 models, i.e., 95% of the
reasoning models trained by random training sequences, for
Participant A. Furthermore, 1 (5.26%) of the reasoning models
trained by random training sequences is outperformed by the
reasoning model trained by the depth-first search sequence by
35%. In addition, 6 (31.58%) of the reasoning models trained by
random training sequences are outperformed by the reasoning
model trained by the depth-first search sequence by 10% to
30%. Meanwhile, for Participant A, the MRR of the reasoning
model trained by the breadth-first search sequence exceeds that
of only 10 models, i.e., 50% of the reasoning models trained
by random training sequences. The reasoning models trained
by the breadth-first search sequence and the depth-first search
sequence perform better on Participant B’s sub-KB compared
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to Participant A’s sub-KB. The MRR of the reasoning models
trained by the depth-first search sequence and the breadth-first
search sequence is higher than the MRR of 17 models, i.e., 85%
of the reasoning models trained by random training sequences.
Nevertheless, the reasoning model trained by the depth-first
search sequence outperforms the reasoning model trained by
the breadth-first search sequence in terms of the MRR. The
MRR of the reasoning model trained by the depth-first search
sequence exceeds that of 13 models, i.e., 65% of the reasoning
models trained by random training sequences, for Participants
C and D. For Participant E, the MRR of the reasoning model
trained by the depth-first search sequence exceeds the MRR
of all 20 models, i.e., 100% of the reasoning models trained
by random training sequences. In addition, for Participant G,
19 and 18 models, i.e., 95% and 90% of the reasoning models
trained by random training sequences, are outperformed by the
reasoning model trained by the depth-first search sequence and
the breadth-first search sequence, respectively. Finally, for Par-
ticipant H, 19 models, i.e., 95% of the reasoning models trained
by random training sequences, are outperformed by the model
trained by the depth-first search sequence. By contrast, only 12
models, i.e., 60% of the reasoning models trained by random
training sequences, are outperformed by the model trained by
the breadth-first search sequence, by 1% to 10%. In general, the
evaluation result confirms that the proposed mechanism delivers
reasoning models with favorable overall accuracy. Moreover, the
depth-first search sequence outperforms the breadth-first search
sequence on knowledge graphs with fewer overlapping entities
such as the WN18RR dataset.

E. Performance Evaluation of Proposed BDKI Mechanism

Once the requestor receives a satisfactory reasoning model,
it can stop initiating a new round of training with a new worker
and end the iterative training process, which reduces the cost
of training. Thus, an efficient mechanism should be able to
produce a reasoning model that has high overall accuracy and
fewer workers and less training involved. In this section, we use
the dataset WN18RR to further demonstrate the efficiency of
the proposed mechanism. We use the same experimental setup
and the same set of sub-KBs described in Table IV. According
to our findings, the depth-first search of the proposed BDKI
mechanism is more suitable for dataset WN18RR. Therefore,
in this section, we use the depth-first search method to show
that the requestor can obtain a reasoning model with a favorable
overall accuracy with less training effort, compared to the gen-
eral distributed knowledge inference methodology with random
training sequences.

For simplicity, we choose Participant A, the participant with
the smallest sub-KB, Participant E, the participant with the
largest sub-KB, and Participant G, the participant with a mid-
sized sub-KB in our evaluation. The result is evaluated using
MRR and described as the overall accuracy. The changes in
the overall accuracy of the reasoning models as more rounds
of training go on and more workers are involved is shown
in Fig. 7, where the red dot illustrates the MRR of the rea-
soning models trained with the proposed BDKI methodology

Fig. 7. Performance of the proposed mechanism with dataset WN18RR.

and the blue shallow illustrates the distribution of the MRR of
the reasoning models trained with the conventional distributed
knowledge inference methodology. Specifically, for Participant
A, the best reasoning model with the highest overall accuracy
using the proposed BDKI methodology is achieved after one
worker has trained. With the same training effort, the reasoning
model obtained from the first worker selected using the proposed
BDKI is better than 95% of the reasoning models obtained from
the first worker of 20 random training sequences. However, the
overall accuracy of the model trained by the proposed BDKI
methodology decreases after the first worker’s training. Thus, a
rational requestor should keep the model trained from the first
worker. In other words, using the proposed BDKI methodology,
the requestor can receive a model with higher overall accuracy
than that of 99.2% of the models trained by the conventional
distributed knowledge inference methodology with 20 random
training sequences, if the iterative training process ends after all
the participants have helped on the training and 140 reasoning
models have been trained.

For Participant E, the best reasoning model with the highest
overall accuracy using the proposed BDKI methodology is
achieved after the fifth worker has trained, which is better than
all of the 100 models obtained from the first five workers of
20 random training sequences. If the requestor is satisfied with
the reasoning model in the early rounds and stops the iterative
training process early, it can receive a model with an overall
accuracy that is higher than that of 95%, 48.3%, 35%, and
25% of the models obtained from the fourth, third, the second
and first worker of random training sequences, respectively.
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Fig. 8. Efficiency of the proposed mechanism with dataset WN18RR.

Similarly, for Participant G, the best reasoning model with the
highest overall accuracy using the proposed BDKI methodology
is obtained from the fourth worker. Furthermore, the reasoning
model obtained from the fourth worker selected using the pro-
posed mechanism is better than all of the 80 reasoning models
obtained from the first four workers of 20 random training
sequences. If the requestor allows the iterative training process to
continue after all the participants have helped with the training,
the reasoning model obtained from the fourth worker selected
using the proposed mechanism is better than 99%, 99.2%, and
98.6% models obtained from the fifth, sixth, and the last worker
of random training sequences, respectively. In addition, if the
requestor stops the training process early, it can receive a model
with an overall accuracy that is higher than that of 98.3%, 95%,
and 75% of the models obtained from the third, second, and
first worker of random training sequences, respectively. Fig. 8
summarizes the discussion above. The proposed mechanism
can produce a reasoning model that has high overall accuracy
and less training effort since the proposed mechanism allows
the requestor to choose a worker in a specific order and fewer
models need to be trained by random combinations. Thus, it
is beneficial and adoptable by the participants for knowledge
sharing of intelligent fault diagnosis in IIoT systems. Addition-
ally, from the observation, we find that the proposed mechanism
benefits the participants with smaller KB more since a better
reasoning model is obtained from early rounds of training with
the proposed mechanism.

V. LIMITATIONS AND OPPORTUNITIES

The proposed mechanism incorporates a blockchain-powered
request matching interface, established as a smart contract,
to facilitate requestors and workers in publishing, browsing,
and matching knowledge requests [22]. Recognizing that the
request matching interface merely requires decentralization and
transparency among participants, we advocate its deployment
on a consortium blockchain employing a Practical Byzantine
Fault Tolerance (PBFT) consensus model. This strategic choice

eradicates the gas fees and latency overhead inherent in public
blockchains [23]. In addition, since the requestor chooses work-
ers based on the confidence indicator self-evaluated by workers
with no verification methods, the truthfulness of the worker is
the key to the success of the proposed mechanism.

VI. CONCLUSION

We have proposed a BDKI mechanism over Web 3.0 for
intelligent knowledge-based intelligent fault diagnosis in IIoT
systems. To the best of our knowledge, this is the first at-
tempt to introduce a BDKI mechanism for knowledge-based
intelligent fault diagnosis using knowledge graphs into IIoT
systems. The proposed mechanism allows collaborative workers
to self-evaluate their ability to contribute in completing the
requestor’s reasoning model with their local knowledge graphs
with a task evaluation function. Upon receiving the evaluation
results, the requestor will choose a worker with the best eval-
uation results, thereby offering a more practical decentralized
knowledge inference for modern IIoT systems. We have ex-
perimentally evaluated the proposed mechanism with the TE
process, FB15K-237, and WN18RR datasets. The results show
that the proposed mechanism can deliver a reasoning model
with higher overall accuracy and less training effort compared
to conventional distributed knowledge inference with random
training sequences. Moreover, we have experimentally verified
that for sparse knowledge graphs, the depth-first search method
should be used, whereas the breadth-first search method should
be used when there is a large overlap of the entities in each local
knowledge graph.
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