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Abstract
Active speaker detection is a challenging task aimed at identifying who is speaking. Due to the critical importance of this task
in numerous applications, it has received considerable attention. Existing studies endeavor to enhance performance at any
cost by inputting information from multiple candidates and designing complex models. While these methods have achieved
excellent performance, their substantial memory and computational demands pose challenges for their application to resource-
limited scenarios. Therefore, in this study, a lightweight and robust network for active speaker detection, named LR-ASD, is
constructed by reducing the number of input candidates, splitting 2D and 3D convolutions for audio-visual feature extraction,
using a simple channel attention module for multi-modal feature fusion, and applying gated recurrent unit (GRU) with low
computational complexity for temporal modeling. Results on the AVA-ActiveSpeaker dataset reveal that LR-ASD achieves
competitive mean Average Precision (mAP) performance (94.5% vs. 95.2%), while the resource costs are significantly lower
than the state-of-the-art method, particularly in terms of model parameters (0.84M vs. 34.33M, approximately 41 times) and
floating point operations (FLOPs) (0.51G vs. 4.86G, approximately 10 times). Additionally, LR-ASD demonstrates excellent
robustness by achieving state-of-the-art performance on the Talkies, Columbia, and RealVAD datasets in cross-dataset testing
without fine-tuning. The project is available at https://github.com/Junhua-Liao/LR-ASD.
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1 Introduction

Active speaker detection is a multi-modal task aimed at iden-
tifying the active speaker from a set of candidates in an
arbitrary video by analyzing audio-visual information. This
task serves as a crucial frontend for other downstream tasks
such as speaker diarization (Qiao et al., 2024; Wang et al.,
2018), speaker tracking (Qian et al., 2021; Ban et al., 2021),
and automatic video editing (Liao et al., 2020, 2024), among
others, thus attracting considerable attention fromboth indus-
try and academia.

The research on active speaker detection dates back over
two decades (Slaney & Covell, 2000; Cutler & Davis, 2000).
However, the development of this field has been relatively
slowdue to the lack of reliable large-scale data.With the rapid
advancement of deep learning for audio-visual tasks (Michel-
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santi et al., 2021), Google released the first large-scale
active speaker detection dataset, AVA-ActiveSpeaker (Roth
et al., 2020), propelling the field to achieve remarkable
progress (Alcázar et al., 2020; Truong et al., 2021; Tesema et
al., 2022; Zhang et al., 2021b; Tao et al., 2021). These stud-
ies have significantly improved the performance of active
speaker detection by incorporating multiple candidate face
sequences as input (Alcázar et al., 2020, 2021; Zhang et al.,
2021a), extracting visual features through 3D convolutional
neural networks (Köpüklü et al., 2021; Alcázar et al., 2022;
Zhang et al., 2019), and fusing visual and audio features using
complex attention modules (Wuerkaixi et al., 2022; Datta et
al., 2022; Xiong et al., 2022), among other approaches. How-
ever, these improvements have come at the cost of increased
memory and computation requirements. Therefore, applying
existing high-performance methods to real-time process-
ing scenarios with constrained memory and computational
resources, such as user-generated content creation, live tele-
vision, and human-computer interactions, poses considerable
difficulties.

This study proposes a lightweight and robust network
for real-time end-to-end active speaker detection, named
LR-ASD. LR-ASD has made lightweight improvements in
the following four aspects: (a) Single input: inputting a
single candidate face sequence with corresponding audio
to minimize the memory footprint per inference; (b) Fea-
ture extraction: splitting 3D and 2D convolutions used for
visual and audio feature extraction to separately extract
spatial/frequency and temporal information reduces model
parameters and computational complexity while enhancing
the encoder’s expressive power by doubling the number of
nonlinear operations; (c) Feature fusion: concatenating fea-
tures preserves the integrity of visual and audio information
and is coupled with a simple channel attention module to
address the challenge posed by the differing contributions
of the two modalities to prediction; (d) Temporal model-
ing: using a module based on the computationally efficient
gated recurrent unit (GRU) (Chung et al., 2014) for temporal
modeling, its forget mechanism enables the current detection
frame to pay more attention to the information from adja-
cent frames, thereby facilitating the prediction of whether
the candidate is currently speaking. Figure 1 visualizes
multiple metrics for different active speaker detection meth-
ods. The results demonstrate that LR-ASD (0.84M params,
0.51G FLOPs, 94.5% mAP) achieves a significant reduc-
tion in both model size and computational costs, while still
maintaining competitive performance compared to the state-
of-the-art method LoCoNet (Wang et al., 2024) (34.33M
params, 4.86GFLOPs, 95.2%mAP) on the benchmarkAVA-
ActiveSpeaker dataset (Roth et al., 2020).Moreover, in cross-
dataset testing without fine-tuning, LR-ASD achieves the
best performance among the three datasets, Talkies (Alcázar
et al., 2021), Columbia (Chakravarty & Tuytelaars, 2016),

and RealVAD (Beyan et al., 2020), demonstrating remark-
able robustness. Finally, the single-frame inference time of
LR-ASD ranges from 0.1 to 3.9ms, making it suitable for
real-time processing.

In summary, the main contributions of this study are sum-
marized below:

• Focusing on information input, feature extraction, feature
fusion, and temporal modeling, this study proposes LR-
ASD, a lightweight and robust network for active speaker
detection.

• Experiments onAVA-ActiveSpeaker, a benchmarkdataset
for active speaker detection released by Google, reveal
thatLR-ASD is competitive to the state-of-the-artmethod
LoCoNet, while still reducing model parameters by
97.6% and FLOPs by 89.5%.

• LR-ASD achieves state-of-the-art performance in cross-
dataset testingwithoutfine-tuningon theTalkies,Columbia,
and RealVAD datasets, demonstrating its strong robust-
ness. Subsequent ablation studies, quantitative analyses,
and qualitative analyses further corroborate the effective-
ness and robustness of LR-ASD. Finally, the good scala-
bility of LR-ASD is validated on the EasyCom (Donley
et al., 2021) and FERV39k (Wang et al., 2022) datasets.

Compared with the conference version (Liao et al., 2023),
this workmainly encompasses the extension of the following
aspects:

• Building upon the Light-ASD1 in the conference ver-
sion, LR-ASD improves the encoders, refines the fea-
ture fusion module, and optimizes the temporal mod-
eling approach. Compared to Light-ASD, LR-ASD
reduces model parameters and FLOPs by approximately
20%, while exhibiting performance enhancements of
0.4%, 0.2%, 5.0%, 11.2%, and 4.7% on the AVA-
ActiveSpeaker, Talkies, Columbia, RealVAD, and Easy-
Com datasets, respectively.

• To comprehensively assess the robustness of LR-ASD,
besides the AVA-ActiveSpeaker and Columbia datasets
used for testing in the conference publication, we addi-
tionally introduce the Talkies (Sect. 4.4.2) and RealVAD
datasets (Sect. 4.4.4) for testing, and the TalkSet dataset
(Sects. 4.4.3, 4.4.4) for fine-tuning. Moreover, we intro-
duce the EasyCom (Sect. 4.8.1) and FERV39k datasets
(Sect. 4.8.2) to evaluate the scene scalability and task
scalability of LR-ASD, respectively.

• Weaddablation studies ondata augmentation (Sect. 4.5.1),
feature fusion (Sect. 4.5.5), module combination
(Sect. 4.5.7), and input length (Sect. 4.5.8), along with

1 https://github.com/Junhua-Liao/Light-ASD
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Fig. 1 mAP vs. FLOPs, size ∝ parameters. This figure illustrates the
mAP of various methods (ASC (Alcázar et al., 2020), MAAS (Alcázar
et al., 2021), TalkNet (Tao et al., 2021), ASDNet (Köpüklü et al.,
2021), ADENet (Xiong et al., 2022), SPELL+ (Min et al., 2022), Light-
ASD (Liao et al., 2023), and LoCoNet (Wang et al., 2024)) on the
benchmark AVA-ActiveSpeaker dataset (Roth et al., 2020), along with
the corresponding FLOPs necessary for predicting a single frame com-
prising three candidates. The size of the blobs is proportional to the
number of model parameters. The legend shows the sizes of the blobs
corresponding to model parameters ranging from 1 × 106 to 30 × 106

qualitative analysis (Sect. 4.7), to substantiate the effec-
tiveness and robustness of LR-ASD.

2 RelatedWork

Multi-modal learning refers to the fusion of information
from multiple sources to establish a more effective joint
representation, thereby providing a superior means of mod-
eling complex problems compared to isolated single-source
approaches (Ngiam et al., 2011). In the video domain, audio-
visual learning is a common multi-modal paradigm used to
solve tasks such as audio-visual action recognition (Liu et
al., 2024; Planamente et al., 2024), audio-visual synchro-
nization (Son Chung et al., 2017; Arandjelovic & Zisserman,
2018), and audio-visual separation (Jati & Georgiou, 2019;
Owens&Efros, 2018). The active speaker detection problem
investigated in this study is a specific instance of audio-visual
separation.

In the early 2000s, Cutler and Davis (2000) pioneered
the active speaker detection task by studying a time-
delayed neural network to learn audio-visual correlations
from speech activity. Subsequent research has extensively
explored this field through various approaches, including
capturing lip motion (Saenko et al., 2005; Matthews et al.,
2002), detecting voice activity (Ramırez et al., 2004;Moattar
& Homayounpour, 2009), and fusing multi-modal informa-
tion (Chakravarty et al., 2016; Chung & Zisserman, 2017).
However, the lack of large-scale data for both training and
testing presents a substantial impediment to the widespread

deployment of existing active speaker detection approaches
in real-world scenarios. In 2019, Google introduced the first
large-scale video dataset for active speaker detection, AVA-
ActiveSpeaker (Roth et al., 2020),whichmarked a newepoch
in the field of research pertaining to active speaker detection.

Driven by the AVA-ActiveSpeaker dataset, the dual-
backbone method based on audio-visual features demon-
strated considerable potential and emerged as a standard
architecture for subsequent research (Chung, 2019; Zhang
et al., 2019). To further improve performance, Alcázar et
al. (2020) first introduced the relational contextual infor-
mation from multiple speakers to handle the active speaker
detection task. Following the triumph of this approach
of increasing input information, subsequent studies have
continuously refined and advanced this idea, resulting in
significant advancements and breakthroughs (Alcázar et
al., 2021; Min et al., 2022; Alcázar et al., 2022; Wang
et al., 2024). Among these studies, Zhang et al. (2021a,
2021b) proposed a robust model by incorporating spatial
contextual information in addition to relational and tem-
poral contextual information. On the other hand, Tao et al.
(2021) introduced cross-attention and self-attention modules
to aggregate audio and visual features of single candidates,
achieving excellent performance by designing complexmod-
els. Expanding on this work, Wuerkaixi et al. (2022) and
Datta et al. (2022) improved the performance by introduc-
ing positional encoding and refining attention modules. To
further exploit the potential of the attention module, Xiong
et al. (2022) introduced a multi-modal layer normalization
technique to mitigate distributional misalignment between
audio and visual features.

Overall, existing research on active speaker detection has
predominantly focused on improving model performance,
while ignoring the costs that arise from inputting additional
candidate information or designing more complex models.
Deploying these methods requires abundant resources, yet
resources in many real-world application scenarios are lim-
ited. For example, providing functions for user-generated
content creation on mobile devices, assisting directors in
real-time camera switching to the current speaker during live
television, and facilitating robot interaction with speakers.
In order to address the challenges posed by extreme environ-
ments, it is imperative to develop a lightweight and efficient
active speaker detection framework. Therefore, this study
aims to investigate the optimal trade-off between lightweight
and performance, i.e., to achieve competitive performance
while minimizing resource consumption.

3 Method

This section details LR-ASD, a novel lightweight and robust
network for active speaker detection. As shown in Fig. 2,
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Fig. 2 The architecture of the LR-ASD

LR-ASD comprises four components. The visual and audio
feature encoders process the input candidate face sequence
and the corresponding audio to extract features from the
visual and audio signals, respectively. The feature fusion
module integrates visual and audio features into multi-
modal features. The detector models the temporal context
of the fused audio-visual features and subsequently predicts
whether the current candidate is speaking.

3.1 Visual Feature Encoder

Due to the capability of 3D convolution to effectively extract
spatiotemporal information from face sequences, someactive
speaker detection methods utilize it to construct the visual
feature encoder (Köpüklü et al., 2021; Xiong et al., 2022;
Zhang et al., 2019; Alcázar et al., 2022). Nevertheless,
encoders constructed using 3D convolution not only have
a large number of parameters but also entail high computa-
tional costs. Research indicates that, under careful design,
decomposing 3D convolutions into 2D convolutions for spa-
tial information extraction and 1D convolutions for temporal
information extraction can achieve excellent performance
and significantly reduce model parameters and computa-
tional burden (Liao et al., 2022; Duan et al., 2022, 2024).

Following this idea, we designed a lightweight visual
block in the conference publication (Liao et al., 2023), as
shown in Fig. 3a. It comprises two spatiotemporal feature
extraction paths: one is the convolution combination after 3D
convolution splitting with a kernel size of 3, and the other is
the convolution combination after 3D convolution splitting
with a kernel size of 5. Finally, features from dual paths are
integrated through convolution with a kernel size of 1.

Specifically, the parameter ratio RP and FLOPs ratio RF

of these convolution combinations relative to 3D convolu-
tions are depicted in Eqs. (1) and (2), respectively.

RP = P2D+1D

P3D

= K × K × Cin × Cout + K × Cout × Cout

K × K × K × Cin × Cout

= K + 2

K × K

(1)

Fig. 3 Architecture of visual feature encoder. The channel output
dimensions Cout of the three visual blocks are 32, 64, and 128, respec-
tively. TheMaxPool operation is performed along the spatial dimension
with a kernel size of 3 and a stride of 2. Blocks (a) and (b) correspond to
the visual blocks within the visual feature encoders of Light-ASD (Liao
et al., 2023) and LR-ASD, respectively

where K denotes the kernel size of the convolution, Cin and
Cout represent the dimensions of input and output feature
channels, respectively, with Cout typically being twice Cin .

RF = F2D+1D

F3D
= P2D+1D × Hout × Wout × Tout

P3D × Hout × Wout × Tout

= P2D+1D × Sout × Tout
P3D × Sout × Tout

= K + 2

K × K

(2)

where K denotes the convolutional kernel size, and Hout ,
Wout , Sout , and Tout respectively represent the dimensions of
the height, width, spatial, and temporal aspects of the output
features.

As the kernel size K increases, the benefits of splitting 3D
convolution in reducing parameters and FLOPs also increase.
Moreover, this operation doubles the number of nonlinear
rectifications, enabling the model to express more complex
functions (Tran et al., 2018).

While the visual feature encoder constructed by this
lightweight design exhibits high performance, the multi-
branch architecture significantly increases memory access
costs (Ding et al., 2021; Vasu et al., 2023). Therefore, this
study designs a straight-barrel lightweight visual feature
encoder, as illustrated in Fig. 3. The encoder contains three
visual blocks, each consisting of four convolutional layers.
Within the visual block, spatial information extraction is first
performed using two layers of 2D convolutions with kernel
sizes of 5 and 3, followed by temporal information extrac-
tion using two layers of 1D convolutions with kernel sizes
of 5 and 3. This design further achieves model lightweight
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by placing relatively complex 2D convolutions at the initial
position to process featureswith smaller channel dimensions.
It is worth noting that, in the visual feature encoder, with
the exception of the initial visual block’s first 2D convolu-
tion with a stride of 2, all subsequent convolutions employ
a stride of 1. This design aims to reduce spatial dimen-
sions, thereby enabling the visual feature encoder to produce
smaller feature maps during subsequent feature extraction.
The small-size feature maps not only reduce memory foot-
print but also improve computational speed (Radosavovic et
al., 2020). Finally, global max pooling is performed along
the spatial dimension to obtain the visual feature Fv for the
candidate face sequence.

3.2 Audio Feature Encoder

In order to enhance the accuracy of speech activity detec-
tion, there are numerous methods (Ravanelli & Bengio,
2018; Krawczyk & Gerkmann, 2014; Ravanelli et al., 2019)
employed for processing audio signals, with Mel-frequency
cepstral coefficients (MFCCs) (Davis &Mermelstein, 1980)
being the most extensively employed (Purwins et al., 2019).
Therefore, similar to most existing active speaker detection
methods (Tesema et al., 2022; Wuerkaixi et al., 2022; Zhang
et al., 2021b; Tao et al., 2021; Datta et al., 2022; Xiong et al.,
2022; Jiang et al., 2023), this study extracts 2D feature maps
consisting of 13D MFCCs and temporal information from
the raw audio signals as inputs to the audio feature encoder.
However, this study does not follow the conventional con-
cept of using 2D convolutional neural networks to extract
audio features as in the aforementioned studies. Instead, it
adopts the idea of lightweight visual blocks, decomposing
2D convolution into two 1D convolutions to extract infor-
mation from MFCCs and temporal dimensions respectively.
Since the computational complexity of 2D convolution is far
less than that of 3D convolution, the benefits of splitting 2D
convolution in reducingmodel parameters andFLOPs are not
significant. This operation is primarily employed to increase
the number of nonlinearities within the audio block.

Figure 4 illustrates the proposed audio feature encoder,
consisting of three audio blocks.Compared to the audio block
in the conference publication (Liao et al., 2023), the audio
block in LR-ASD has also been improved with a straight-
barrel design, composed of four layers of 1D convolution.
Given the overlapping frames in MFCCs analysis windows
during raw audio signal sampling, dimensionality reduction
is required to align the audio features with the visual features
frame by frame (Tao et al., 2021; Xiong et al., 2022; Jiang et
al., 2023). Therefore, the first two max pooling operations in
the audio feature encoder are performed along the temporal
dimension, and the final global average pooling is performed
along the MFCCs dimension to obtain the audio features Fa
of the candidate.

Fig. 4 Architecture of the audio feature encoder. The channel out-
put dimensions Cout of the three audio blocks are 32, 64, and 128,
respectively. The MaxPool operation is performed along the temporal
dimension with a kernel size of 3 and a stride of 2. Blocks (a) and (b)
correspond to the audio blocks within the audio feature encoders of
Light-ASD (Liao et al., 2023) and LR-ASD, respectively

Fig. 5 Architecture of the feature fusionmodule. f iv , f
i
a , and f iav denote

the visual features, audio features, and audio-visual features, respec-
tively, of the ith frame within the candidate sequence. wi

c represents the
channel weight vector of the concatenated features for the ith frame in
the candidate sequence, with values ranging from [0,1]

3.3 Feature FusionModule

In Light-ASD (Liao et al., 2023), the multi-modal fea-
ture Fav is obtained by directly summing the visual feature
Fv and the audio feature Fa . This feature fusion approach
assumes equal contribution between visual and audio fea-
tures. However, previous research (Köpüklü et al., 2021)
and our ablation study (Sect. 4.5.7) indicate that in active
speaker detection tasks, methods solely utilizing visual fea-
tures outperform those solely relying on audio features by a
significant margin, thus confirming the unequal contribution
of visual and audio features. To better leverage both visual
and audio features, this study designs a novel audio-visual
feature fusion module, as illustrated in Fig. 5. This module
first concatenates the visual feature Fv and the audio feature
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Fa along the channel dimension to preserve the integrity of
information within each modality. Subsequently, it utilizes a
fully connected layer (FC) to calculate the channel weights
based on the influence of information within each channel
on the prediction. Finally, these weights are used to scale the
concatenated features to obtain the audio-visual feature Fav

with refined information.

3.4 Detector

Previous studies (Tao et al., 2021; Alcázar et al., 2022;Min et
al., 2022; Wang et al., 2024) have shown that temporal mod-
eling of audio-visual features can improve the performance
of active speaker detectionmethods. The purpose of temporal
modeling is to assist themodel in determiningwhether recent
lip movements match the speech activity, thereby predicting
whether the candidate is speaking. Therefore, the computa-
tionally efficient GRU (Chung et al., 2014) with a forgetting
mechanism is our primary choice for temporal modeling. It
can model global temporal information within the sequence
and filter out distant irrelevant information using the forget-
ting mechanism during the modeling process, enabling the
current detection frame to focus more on information from
adjacent frames.

Figure 6 shows the schematic of the detector’s archi-
tecture. Firstly, the audio-visual feature Fav processed by
dropout is sent to the forward and backward GRUs for tem-
poral modeling, respectively. In order to make the detector
more lightweight, the feature output dimensions are reduced
to a quarter of the input dimensions during the modeling of
temporal context information. Secondly, the features con-
taining forward temporal information are concatenated with
those containing backward temporal information to preserve
the integrity of information from different directions. Then,
the simple channel attentionmodulewithin the feature fusion
module is employed to calculate weights and scale the fea-
tures containing bidirectional temporal information. Finally,
an FC layer predicts whether the candidate is speaking.

3.5 Loss Function

The existing loss function of active speaker detection usu-
ally follows the architecture composed of the main classifier,
visual auxiliary classifier, and audio auxiliary classifier (Roth
et al., 2020). In special scenarios involving multiple candi-
dates, the visual auxiliary classifier can determine whether
a candidate is speaking by solely relying on the facial infor-
mation of that candidate. However, in the absence of visual
features, the audio auxiliary classifier can only determine the
presence of speech, rather than identifying the specific can-
didate currently speaking, thereby resulting in high losses.
To address this issue, many methods (Wuerkaixi et al., 2022;
Zhang et al., 2021b; Tao et al., 2021) choose to perform

Fig. 6 Architecture of the detector. f iav represents the audio-visual fea-
tures of the ith frame within the candidate sequence. wi

t represents the
channel weight vector of the bidirectional temporal features for the ith
frame in the candidate sequence, with values ranging from [0,1]

cross-modal interactions between visual and audio features
before feeding them into the auxiliary classifier. While this
approach effectively alleviates the convergence difficulties
of the audio auxiliary classifier, it also incurs higher compu-
tational costs, as all three classifiers are essentially making
predictions based on the multi-modal audio-visual features.
To mitigate computational costs, LR-ASD departs from the
solution of introducing additional cross-modal interactions
and instead modifies the architecture of the loss function.
Specifically, the loss function employed by LR-ASD consists
solely of a main classifier and a visual auxiliary classifier.

The loss function is calculated as follows:
First, apply softmax to the prediction results.

ps = exp(rspeaking)

exp(rspeaking) + exp(rno_speaking)
(3)

where rspeaking and rno_speaking respectively represent the
prediction result of whether the current candidate speaks,
and ps denotes the probability of the candidate speaking.

Next, the loss L is calculated as follows.

L = − 1

T

T∑

i=1

(
gi log(pis) + (1 − gi ) log(1 − pis)

)
(4)

where pis and gi are the probability and ground truth of the
candidate speaking in the ith frame of the video. T refers to
the number of video frames.

Finally, the loss function Lasd is obtained.

Lasd = Lav + λLv (5)

whereLav andLv represent the respective losses of the main
classifier and the visual auxiliary classifier, while λ denotes
the weight coefficient, which is set to 0.5.
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Fig. 7 Example frames extracted from the datasets utilized in thiswork.
The annotations within the green boxes denote active speakers, whereas
the annotations in the red boxes represent individualswho are not speak-
ing (Color figure online)

4 Experiment

4.1 Dataset

We primarily evaluate LR-ASD on the AVA-ActiveSpeaker
dataset (Roth et al., 2020) and report its performance before
and after fine-tuning on the Talkies (Alcázar et al., 2021),
Columbia (Chakravarty & Tuytelaars, 2016), and Real-
VAD (Beyan et al., 2020) datasets. The sample frames for
each dataset are shown in Fig. 7.

4.1.1 AVA-ActiveSpeaker Dataset

Google’s release of the AVA-ActiveSpeaker dataset (Roth et
al., 2020) marks a significant milestone as the first large-
scale standard benchmark for active speaker detection. This
dataset comprises 262 Hollywood movies, partitioned into
three subsets: 120 for training, 33 for validation, and the
remaining 109 for testing. Each movie is annotated for a
duration of 15min, including annotations for face bounding
boxes, entities, and speaking labels. The complete dataset
comprises normalized bounding boxes for 5.3 million faces,
each of which is associated with a speaking or nonspeak-
ing label. As a mainstream benchmark for active speaker
detection evaluations, this dataset incorporates challenging
factors such as occlusions, low-resolution faces, low-quality
audio, and various lighting conditions, significantly increas-
ing the difficulty level of the task. Since the test set used in
the ActivityNet challenge is currently unavailable, this study
evaluates the performance of the validation set in a manner
similar to previous studies (Tesema et al., 2022; Xiong et al.,
2022; Datta et al., 2022; Zhang et al., 2021b; Wuerkaixi et
al., 2022).

4.1.2 Talkies Dataset

The Talkies dataset (Alcázar et al., 2021) is another in-
the-wild active speaker detection dataset, following the
AVA-ActiveSpeaker dataset. The dataset contains 23,507
face tracks extracted from 10,000 short clips, each with a
duration of 1.5 s, collected from social media. Although this
dataset is less extensive in scale than the AVA-ActiveSpeaker
dataset, it particularly focuses on challenging scenarios fea-
turing more speakers per frame, more diversity in terms of
actors and scenes, as well as more appearances of off-screen
speech.

4.1.3 Columbia Dataset

The Columbia dataset (Chakravarty & Tuytelaars, 2016)
serves as another standard test benchmark for active speaker
detection. This dataset annotates a 35-min segment of an
87-min panel discussion video from Columbia University,
including approximate bounding boxes and active speaker
labels to indicate whether the visible faces are speaking at
specific timepoints. In the video, there arefive speakers (Bell,
Boll, Lieb, Long, and Sick) who take turns speaking, with
two to three speakers visible at any given time.

4.1.4 RealVAD Dataset

The RealVAD dataset (Beyan et al., 2020) is similar to the
Columbia dataset in that it is constructed from an 83-min
panel discussion video. The video was recorded using a sta-
tionary camera that captured all the panelists, the moderator,
and audiences. This dataset provides upper body bounding
boxes and voice activity labels for nine panelists with differ-
ent nationalities, spanning a duration of 42min. The panelists
exhibit diverse facial expressions as they move freely and
engage in spontaneous actions.

4.1.5 TalkSet Dataset

The TalkSet dataset (Tao et al., 2021) is a novel hybrid
dataset to address the issue of algorithmic incompatibil-
ity between the AVA-ActiveSpeaker and Columbia datasets
for annotating face bounding boxes. This dataset comprises
90,000 videos with an active voice from the VoxCeleb2
dataset (Chung et al., 2018) and 60,000 videos without an
active voice from the LRS3 dataset (Afouras et al., 2018).
Subsequent research (Tao et al., 2021; Xiong et al., 2022;
Liao et al., 2023) employing this dataset for fine-tuning
resulted in a notable enhancement of the algorithm’s per-
formance on the Columbia dataset.

123



International Journal of Computer Vision

Fig. 8 The procedure for dataset utilization

4.1.6 Dataset Usage

The usage of the aforementioned datasets in this work is
depicted in Fig. 8. Firstly, the LR-ASD is trained on the
AVA-ActiveSpeaker dataset and its performance is evaluated
on the AVA-ActiveSpeaker, Talkies, Columbia, and Real-
VAD datasets. Secondly, the fine-tuned and the from-scratch
trained LR-ASD on the Talkies dataset are evaluated. Finally,
following the precedent work (Tao et al., 2021; Xiong et al.,
2022; Liao et al., 2023), LR-ASD trained from the AVA-
ActiveSpeaker dataset is fine-tuned on the TalkSet dataset,
and subsequently tested on the Columbia and RealVAD
datasets.

4.2 Implementation Details

All facial images are standardized to a uniform size of
112×112 pixels. LR-ASD is implemented using PyTorch
and subsequently trained for 40 epochs utilizing the AdamW
optimizer with a weight decay of 0.01. The initial learning
rate is set to 0.001, and it undergoes a decay of 0.05 per epoch.
All experiments are conducted using an NVIDIA RTX 3090
GPU with 24GB of memory.

Following established protocols, the AVA-ActiveSpeaker
dataset is evaluated using mean Average Precision (mAP)
and Area Under Curve (AUC), the Talkies dataset eval-
uation employs mAP, while the Columbia and RealVAD
datasets utilize the F1 score as the evaluation metric. Herein,
model parameters and floating point operations (FLOPs) are
reported as additional metrics for assessing the size and com-
plexity of the various active speaker detection models.

4.3 Data Augmentation

4.3.1 Visual Data Augmentation

The augmentation techniques applied to visual data include
randomly resized cropping, horizontal flipping, as well as
image rotation. Specifically, the cropped region covers 49%
to 100% of the standardized facial image, with the rotation
angle constrained within the range of −15◦ to +15◦ rela-

tive to the image center. The facial images within a given
candidate sequence undergo uniform processing procedures.

4.3.2 Audio Data Augmentation

To improve LR-ASD’s robustness against noise, we integrate
the negative sampling techniqueproposedbyTao et al. (2021)
to augment the audio data during model training. This tech-
nique increases the number of training samples by randomly
selecting an audio track from another video as noise within
the same batch of the original video. This solution proves
to be both straightforward and effective, as it exclusively
leverages in-domain noise and interference speakers present
within the training set for audio enhancement, obviating the
need for external data sources beyond the training set. As
a result, numerous subsequent studies (Datta et al., 2022;
Wuerkaixi et al., 2022; Xiong et al., 2022; Liao et al., 2023;
Wang et al., 2024) have incorporated this technique for audio
augmentation.

4.4 Comparison with State-of-the-art Methods

4.4.1 Evaluation on AVA-ActiveSpeaker Dataset

Table 1 shows the performance comparison between the pro-
posed LR-ASD and other active speaker detection methods
on theAVA-ActiveSpeaker validation set. The four aspects of
the experimental results are highlighted. (a) Lightweight and
efficient. Compared to the state-of-the-art LoCoNet (Wang
et al., 2024), LR-ASD reduces the model parameters by
41 times and the computations by 10 times, while mAP
is only slightly lower by 0.7%, reaching 94.5%. (b) End-
to-End. Although SPELL+ (Min et al., 2022) achieves a
slightly higher mAP than LR-ASD by 0.4%, it is a two-
stagemethodwith higher complexity and computational cost
compared to the end-to-end LR-ASD. (c) No pre-training.
Unlike methods (ASC, MAAS, UniCon, ASDNet, EASEE-
50, SPELL+, and LoCoNet) of employing classical neural
networks as encoders and loading pre-trained weights from
other large-scale datasets, LR-ASD utilizes self-designed
lightweight encoders and is trained from scratch solely
on the AVA-ActiveSpeaker training set. (d) Single candi-
date. Existing studies (ASC, MAAS, UniCon, ASDNet,
EASEE-50, SPELL+, and LoCoNet) tend to leverage rela-
tional contextual information among speakers to improve
performance. In scenarios with resource constraints, the
method employing a single candidate input strategy sup-
ports longer input sequences, and the increased temporal
information contributes to the enhancement of prediction
accuracy. Meanwhile, results substantiate LR-ASD’s capa-
bility to make accurate predictions by utilizing the audio and
visual signals from individual candidates.
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Table 1 Comparison of mAP (%) on the validation set of the AVA-ActiveSpeaker dataset (Roth et al., 2020)

Method Avenue Single candidate? Pre-training? End-to-End? Params (M) FLOPs (G) mAP (%) AUC (%)

ASC (Alcázar et al., 2020) CVPR’20 ✗ ✔ ✗ 23.47 1.78 87.1 86.8

MAAS (Alcázar et al., 2021) ICCV’21 ✗ ✔ ✗ 22.51 2.82 88.8 –

Sync-TalkNet (Wuerkaixi et al., 2022) MLSP’22 ✔ ✗ ✔ 15.74 1.53 89.8 –

UniCon (Zhang et al., 2021b) MM’21 ✗ ✔ ✗ >22.35 >1.81 92.2 97.0

TalkNet (Tao et al., 2021) MM’21 ✔ ✗ ✔ 15.74 1.53 92.3 96.8

ASD-Transformer (Datta et al., 2022) ICASSP’22 ✔ ✗ ✔ >13.91 >1.53 93.0 –

ADENet (Xiong et al., 2022) TMM’22 ✔ ✗ ✔ 33.16 22.68 93.2 97.2

ASDNet (Köpüklü et al., 2021) ICCV’21 ✗ ✔ ✗ 51.34 14.88 93.5 –

EASEE-50 (Alcázar et al., 2022) ECCV’22 ✗ ✔ ✔ >74.66 >65.54 94.1 –

Light-ASD (Ours) Liao et al. (2023) CVPR’23 ✔ ✗ ✔ 1.02 0.63 94.1 97.5

SPELL (Min et al., 2022) ECCV’22 ✗ ✔ ✗ 22.46 2.41 94.2 –

SPELL+ (Min et al., 2022) ECCV’22 ✗ ✔ ✗ 47.32 5.37 94.9 –

LoCoNet (Wang et al., 2024) CVPR’24 ✗ ✔ ✔ 34.33 4.86 95.2 98.0

LR-ASD – ✔ ✗ ✔ 0.84 0.51 94.5 97.7

Bold represents the best result in the comparison methods
For each method, the results are obtained from its published paper or calculated from the available open-source code. For studies (Zhang et al.,
2021b; Datta et al., 2022; Alcázar et al., 2022) that have not yet been made open source, estimations are generated for the parameters and FLOPs
of their audio-visual encoders. FLOPs stands for the number of floating point operations required to calculate a single frame containing three
candidates

By increasing the amount of information and complexity
of the model, LoCoNet achieves the state-of-the-art perfor-
mance of 95.2%, but the number of model parameters and
FLOPs also increase to 34.33M and 4.86G, respectively.
AlthoughLoCoNet employs amulti-candidate input strategy,
it can only predict a single target candidate. Moreover, when
the number of candidates is fewer than the specified count,
it necessitates repeated sampling of facial sequences from
the target candidate to fulfill the model’s input requirements,
which consumes a significant amount of computational
resources. In contrast, LR-ASD achieves comparable per-
formance using approximately 2% of the model parameters
and 10% of the computational cost of LoCoNet, which
indicates that the compact model is also capable of achiev-
ing exceptional performance in the active speaker detection
task. Furthermore, compared to our conference publication’s
Light-ASD, LR-ASD achieves a 0.4% increase in mAP
while simultaneously reducing model parameters by 18%
and FLOPs by 19%, solidifying its position as a more com-
petitive lightweight model.

4.4.2 Evaluation on Talkies Dataset

Results from three sets of comparative experiments con-
ducted on the Talkies dataset are presented in Table 2. First,
directly testing themodels trainedon theAVA-ActiveSpeaker
dataset, bothLR-ASDandLoCoNet achieve an optimalmAP
of 88.4% on the Talkies dataset. Second, when different
methods are trained from scratch on the Talkies dataset, LR-

ASD achieves an mAP of 94.9%, second only to LoCoNet’s
96.1%. Finally, fine-tuning various models pre-trained on
the AVA-ActiveSpeaker dataset, LR-ASD achieves an mAP
of 96.5% on the Talkies dataset, trailing the state-of-the-art
model by a mere 0.7%. Due to the Talkies dataset’s focus
on challenging scenarios involving multiple candidates, the
large model LoCoNet, which employs a multi-candidate
input strategy, achieves state-of-the-art performance. As
a lightweight solution employing a single-candidate input
strategy, LR-ASD not only outperforms the conference pub-
lication’s Light-ASD under different experimental settings,
but also demonstrates competitiveness second only to the
state-of-the-art method.

4.4.3 Evaluation on Columbia Dataset

Table 3 presents the experimental results obtained from the
Columbia dataset. When the model is trained solely on the
AVA-ActiveSpeaker dataset, LR-ASD achieves the highest
average F1 score of 86.1% on the Columbia dataset, signif-
icantly outperforming the state-of-the-art method LoCoNet
on the AVA-ActiveSpeaker dataset. Perhaps LoCoNet over-
fits the AVA-ActiveSpeaker dataset, resulting in its average
F1 score of only68.1%on theColumbiadataset.Compared to
Light-ASD in our conference publication, LR-ASD achieves
a 5% increase in average F1 score, while also ranking first
in F1 score for all five speakers in this dataset. It is worth
mentioning that TalkNet achieves a remarkable 40% increase
in its average F1 score after undergoing fine-tuning on the
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Table 2 Comparison of mAP
(%) on the Talkies
dataset (Alcázar et al., 2021)

Method Training set mAP (%)
AVA Talkies

AVA Baseline (Roth et al., 2020) ✔ ✗ 71.5

ASC (Alcázar et al., 2020) ✔ ✗ 77.4

MAAS (Alcázar et al., 2021) ✔ ✗ 79.1

TalkNet (Tao et al., 2021) ✔ ✗ 86.5

EASEE-50 (Alcázar et al., 2022) ✔ ✗ 86.7

Light-ASD (Ours) (Liao et al., 2023) ✔ ✗ 88.2

LoCoNet (Wang et al., 2024) ✔ ✗ 88.4

LR-ASD ✔ ✗ 88.4

TalkNet (Tao et al., 2021) ✗ ✔ 93.2

EASEE-50 (Alcázar et al., 2022) ✗ ✔ 93.6

Light-ASD (Ours) (Liao et al., 2023) ✗ ✔ 94.7

LoCoNet (Wang et al., 2024) ✗ ✔ 96.1

LR-ASD ✗ ✔ 94.9

TalkNet (Tao et al., 2021) ✔ ✔ 94.4

EASEE-50 (Alcázar et al., 2022) ✔ ✔ 94.5

Light-ASD (Ours) (Liao et al., 2023) ✔ ✔ 96.2

LoCoNet (Wang et al., 2024) ✔ ✔ 97.2

LR-ASD ✔ ✔ 96.5

Bold represents the best result in the comparison methods

TalkSet dataset (Tao et al., 2021), ultimately achieving a
state-of-the-art performance of 96.2%. To this end, we fine-
tune Light-ASD and LR-ASD using the TalkSet dataset. The
results indicate that LR-ASD achieves state-of-the-art per-
formance with only approximately 5% of the parameters of
TalkNet, demonstrating excellent generalization ability.

4.4.4 Evaluation on RealVAD Dataset

The comparison results of existing methods on the RealVAD
dataset are summarized in Table 4. In cross-dataset testing
without fine-tuning, LR-ASD achieves the highest average
F1 score of 70.5%, surpassing even the existing state-of-
the-art method (Beyan et al., 2020) on the RealVAD dataset
by 17.5%, demonstrating its remarkable robustness. Further-
more, LR-ASD achieves the highest F1 score from eight of
the nine panelists in theRealVADdataset. Subsequently, after
fine-tuning on the TalkSet dataset, the average F1 score of
LR-ASD reaches 82.1%, still better than the 81.9% of Light-
ASD in the conference publication. This indicates that the
improvements made by LR-ASD based on Light-ASD make
it have better robustness and generalization.

4.5 Ablation Studies

4.5.1 Data Augmentation

In Table 5, the impact of data augmentation techniques
commonly used in active speaker detection tasks on the
performance of LR-ASD is presented. Without data aug-
mentation, LR-ASD severely overfits the training set of the
AVA-ActiveSpeaker dataset, resulting in only 93.1% of its
mAP on the validation set. In mitigating overfitting, aug-
menting either visual or audio data alone is considerably less
efficacious than concurrently augmenting both visual and
audio data, the latter of which elevates the mAP to 94.5%.
Hence, it can be deduced that the augmentation of audio-
visual data is one of the methodologies for enhancing the
performance of active speaker detection methods.

4.5.2 Kernel Size

The impact of visual/audio blocks constructed using convo-
lutions of varying kernel sizes on the LR-ASD performance
is presented in Table 6. When the block is constructed
with convolutions of kernel size 3, LR-ASD achieves an
mAP of 93.5%, outperforming the majority of active speaker
detection methods (ASC, MAAS, Sync-TalkNet, UniCon,
TalkNet, ASD-Transformer, and ADENet), while utilizing
merely 0.46M model parameters and 0.18G FLOPs. When
the convolutional kernel size is increased from 3 to 5, bene-
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Table 3 Comparison of F1-Score (%) on the Columbia dataset (Chakravarty & Tuytelaars, 2016)

Method AVA Speaker

Only Bell Boll Lieb Long Sick Avg

TalkNet (Tao et al., 2021) ✔ 43.6 66.6 68.7 43.8 58.1 56.2

LoCoNet (Wang et al., 2024) ✔ 54.0 49.1 80.2 80.4 76.8 68.1

Light-ASD (Ours) (Liao et al., 2023) ✔ 82.7 75.7 87.0 74.5 85.4 81.1

LR-ASD ✔ 88.8 77.9 90.3 85.4 88.3 86.1

Chakravarty et al. (Chakravarty & Tuytelaars, 2016) ✗ 82.9 65.8 73.6 86.9 81.8 78.2

RGB-DI (Shahid et al., 2019) ✗ 86.3 93.8 92.3 76.1 86.3 87.0

Shahid et al. (Shahid et al., 2019) ✗ 87.3 96.4 92.2 83.0 87.2 89.2

SyncNet (Chung & Zisserman, 2017) ✗ 93.7 83.4 86.8 97.7 86.1 89.5

LWTNet (Afouras et al., 2020) ✗ 92.6 82.4 88.7 94.4 95.9 90.8

RealVAD (Beyan et al., 2020) ✗ 91.9 98.9 94.1 89.1 92.8 93.4

Truong et al. (Truong et al., 2021) ✗ 95.8 88.5 91.6 96.4 97.2 93.9

S-VVAD (Shahid et al., 2021) ✗ 92.4 97.2 92.3 95.5 92.5 94.0

Sharma et al. (Sharma & Narayanan, 2022) ✗ 95.3 90.5 98.2 93.2 96.1 94.7

Light-ASD (Ours) (Liao et al., 2023) ✗ 97.7 86.3 98.2 99.0 96.3 95.5

ADENet (Xiong et al., 2022) ✗ 97.4 88.1 97.5 98.5 98.0 95.9

TalkNet (Tao et al., 2021) ✗ 97.1 90.0 99.1 96.6 98.1 96.2

LR-ASD ✗ 96.9 89.4 97.6 99.0 99.2 96.4

Bold represents the best result in the comparison methods

Table 4 Comparison of F1-Score (%) on the RealVAD dataset (Beyan et al., 2020)

Method Avenue Training set Speaker
P1 P2 P3 P4 P5 P6 P7 P8 P9 Avg

TalkNet (Tao et al., 2021) MM’21 AVA 85.8 35.5 49.8 21.5 50.7 74.6 39.6 36.9 69.0 51.5

Light-ASD (Ours) (Liao et al., 2023) CVPR’23 AVA 75.5 45.4 62.4 39.4 74.1 80.4 43.8 37.6 75.1 59.3

LR-ASD – AVA 88.1 40.3 74.0 73.1 77.5 82.4 58.1 57.0 83.9 70.5

Beyan et al. (Beyan et al., 2020) TMM’20 Columbia 53.6 51.1 41.1 50.2 37.3 50.3 56.7 53.6 69.8 51.5

S-VVAD (Shahid et al., 2021) WACV’21 Columbia 58.3 59.3 48.0 44.8 37.3 57.4 55.6 71.3 41.1 52.6

Beyan et al. (Beyan et al., 2020) TMM’20 RealVAD 51.6 53.5 42.9 51.7 44.4 50.5 58.7 67.9 55.8 53.0

Light-ASD (Ours) (Liao et al., 2023) CVPR’23 AVA & TalkSet 94.4 77.3 82.5 78.2 86.6 85.2 67.1 82.3 83.8 81.9

TalkNet (Tao et al., 2021) MM’21 AVA & TalkSet 97.9 78.0 89.0 87.4 82.8 89.9 66.3 87.2 88.7 85.2

LR-ASD – AVA & TalkSet 92.5 70.0 80.4 83.6 85.1 91.8 66.7 80.3 88.6 82.1

Bold represents the best result in the comparison methods
The notation ’P1-P9’ represents panelists 1 to 9, respectively

fiting from the increased input information during the feature
extraction process, LR-ASD’s performance improved by
0.5%, reaching an mAP of 94.0%. However, blindly increas-
ing the receptivefields does not lead to sustainedperformance
enhancement. For example, when the size of the convolu-
tional kernel increases from 5 to 7, LR-ASD experiences a
significant increase in the number of parameters and com-
putations, while its performance decreases. To fully leverage
information gained from different receptive fields, LR-ASD
explores two straight-barrel structured visual/audio blocks
constructed by convolutions with kernel sizes of 3 and 5,
achieving an optimal mAP of 94.5%. Among them, block

(a) alternately extracts spatial/MFCCs and temporal informa-
tion,while block (b) first extracts spatial/MFCCs information
and then performs temporal modeling. The results indicate
comparable performance between the two blocks, as the
encoders constructed by each of them alternately extract spa-
tial/MFCCs and temporal information. Moreover, the block
(b) adopted by LR-ASD, based on the characteristic of hav-
ing fewer feature channels in the early stage of the visual
block, chooses to first use 2D convolutions with high com-
putational complexity to extract spatial information, further
reducing parameters and FLOPs compared to block (a).
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Table 5 Impact of data augmentation

Method Visual Audio mAP(%)

LR-ASD ✗ ✗ 93.1

✔ ✗ 93.3

✗ ✔ 93.4

✔ ✔ 94.5

Bold represents the best result in the comparison methods

4.5.3 Visual Feature Encoder

Table 7 shows the performance of LR-ASD equipped with
different visual feature encoders. Although 3D convolution
is suitable for processing face sequences, numerous active
speaker detection methods prefer relatively low-cost solu-
tions. They first utilize 2D convolutional neural networks
for the extraction of high-level spatial features from the
face sequences, followed by temporal modeling of these
features (Alcázar et al., 2020, 2021; Min et al., 2022). A
representative example is the visual feature encoder used in
TalkNet, which includes ResNet-18 (He et al., 2016) and a
temporal module, and has been adopted in many subsequent
studies (Datta et al., 2022; Wang et al., 2024; Jiang et al.,
2023). To this end, we first evaluate the performance of this
encoder when equipped with ResNet-18 and two lightweight
networks (Howard et al., 2017; Zhang et al., 2018) respec-
tively to extract spatial features. The results indicate that
lightweight solutions can achieve comparable performance
to the large-capacity model, which may be because the input
in this study consists of small and relatively simple face

images. Therefore, a well-designed small model is sufficient
for the feature extraction task. However, the performance
of these lightweight models constructed using depthwise
and group convolutions in active speaker detection tasks
still needs to be improved. Moreover, although depthwise
convolution theoretically requires less computation, existing
research (Chollet, 2017; Zhang et al., 2018) has shown that
its arithmetic intensity (ratio of FLOPs to memory accesses)
is too low to efficiently utilize the hardware, resulting in poor
computational efficiency in practice. As for group convolu-
tion, it requires effective inter-group information interaction
to compensate for the loss of global information learning
ability caused by grouped processing of information (Zhang
et al., 2018), while ShuffleNet’s inter-group channel shuffle
strategy increases memory access costs (Ding et al., 2021).
Finally, the feature dimensions extracted by these models are
relatively large, and these studies typically perform dimen-
sionality reductionbefore conductingmulti-modalmodeling,
which inevitably leads to information loss.

Differing from the classic idea, the visual feature encoders
of Light-ASD and LR-ASD achieve lightweight design by
splitting the 3D convolutions, enabling temporal modeling
to be conducted during the process of spatial feature extrac-
tion. Meanwhile, our encoders extract visual features with
only 128 dimensions, avoiding the information loss caused
by dimension reduction. The experiments indicate that com-
pared to the visual feature encoder of Light-ASD, the encoder
of LR-ASD is more lightweight and performs superiorly.
Furthermore, LR-ASD’s visual feature encoder adopts a
straight-barrel structure, resulting in lower memory access
costs (Ding et al., 2021; Vasu et al., 2023) compared to the

Table 6 Impact of
convolutional kernel size

Kernel size Params (M) FLOPs (G) mAP (%)

3 0.46 0.18 93.5

5 0.73 0.42 94.0

7 1.08 0.72 93.9

(a) 3 and 5 (S/M5, T5, S/M3, T3) 0.86 0.57 94.2

(b) 3 and 5 (S/M5, S/M3, T5, T3) 0.84 0.51 94.5

Bold represents the best result in the comparison methods
S, M, and T represent spatial, MFCCs, and temporal dimensions, respectively, with subscript numbers indi-
cating kernel size

Table 7 Impact of visual
feature encoder

Encoder Params (M) FLOPs (G) mAP (%)

TalkNet (Tao et al., 2021) 13.64 1.53 92.1

ShuffleNet (Zhang et al., 2018) 6.97 0.45 92.1

MobileNet (Howard et al., 2017) 6.19 0.48 91.8

LR-ASD (3D Convolution) 1.37 1.02 93.6

Light-ASD (Ours) 0.98 0.63 94.3

LR-ASD 0.84 0.51 94.5

Bold represents the best result in the comparison methods
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Table 8 Impact of audio feature
encoder

Encoder Params (M) FLOPs (G) mAP (%)

ResNet-18 (He et al., 2016) 11.84 0.57 94.1

LR-ASD (2D Convolution) 1.06 0.51 94.0

Light-ASD (Ours) 0.88 0.51 94.4

LR-ASD 0.84 0.51 94.5

Bold represents the best result in the comparison methods

multi-branch structure of Light-ASD. Finally, we also eval-
uate the performance of LR-ASD’s visual feature encoder
without splitting, i.e., using 3D convolutions. Although the
encoder is lightweight, employing 3D convolution doubles
FLOPswhile reducing performance. Compared to 3D convo-
lutions, the combination of 2D and 1D convolutions doubles
the number of nonlinear rectifications, enabling the model
to represent more complex functions. Therefore, reasonably
splitting 3D convolution is not only beneficial for model
lightweightness but also improves performance.

4.5.4 Audio Feature Encoder

The impact of different audio feature encoders on the per-
formance of LR-ASD is shown in Table 8. Many active
speaker detection methods utilize ResNet-18 as an audio
feature encoder to process 2D audio feature maps consist-
ing of MFCCs and temporal information (Datta et al., 2022;
Alcázar et al., 2022; Min et al., 2022). Therefore, the perfor-
mance of LR-ASD using ResNet-18 to extract audio features
is evaluated. While this encoder significantly increases the
model parameters, it does not bring performance improve-
ment, probably for similar reasons to the poor performance
of ResNet in the visual feature encoders. Larger models may
be prone to overfittingwhen extracting information from fea-
ture maps of small dimensions. Subsequently, in comparison
withLight-ASD,LR-ASD’s audio feature encoder is not only
more lightweight but also demonstrates better performance.
Finally, the performance of using 2D convolutions in audio
blocks is validated. Due to the compact design of LR-ASD’s
encoder and the relatively lower computational complexity
of 2D convolutions compared to 3D convolutions, the differ-
ence in the number of model parameters and FLOPs before
and after splitting of 2D convolutions is relatively small.
The experiments indicate that the performance of the audio
encoder based on 2D convolutions is inferior to that of the
audio encoder based on 1D convolutions achieved through
the splitting of the former. Perhaps the audio feature maps
lack a strong spatial logic similar to that of images, thus pro-
cessing the MFCCs and temporal dimensions separately is
more conducive to aggregating audio information.

4.5.5 Feature Fusion

Table 9 presents the performance of LR-ASD when fus-
ing visual and audio features through different methods. In
the task of active speaker detection, employing transformer-
basedmulti-modal feature fusion is a commonapproach (Wang
et al., 2024; Tao et al., 2021; Xiong et al., 2022). While
LR-ASD achieves an mAP of nearly 94.5% using the
transformer-basedmodule (Tao et al., 2021) to fuse visual and
audio features, it increases the number of parameters by 39%.
Contrastingly, the element-wise addition employed in Light-
ASD is the simplest and most lightweight feature fusion
method, based on the assumption that both visual and audio
features contribute equally to the prediction. However, previ-
ous research (Köpüklü et al., 2021) has demonstrated notable
disparities in the performance of models relying solely on
single-modal information for predictions in this task, sug-
gesting that the contributions of visual and audio features
are not equal. As a result, LR-ASD, using the element-wise
addition, achieves an mAP of only 93.6%. Theoretically, the
fusion method of concatenating features can maximize the
preservation of information from different modalities, thus
achieving better performance, as confirmed by subsequent
experiments. To better utilize multi-modal features, LR-
ASD, building upon feature concatenation, further refined
audio-visual features using a simple channel attention mod-
ule, resulting in an optimal mAP of 94.5%. Compared to
the fusion method of element-wise addition, this method
increases the number of parameters by 0.12M in exchange
for a 0.9% improvement in performance,which is acceptable.

4.5.6 Detector

The impact of detectors employing different methods to pro-
cess audio-visual features on the performance of LR-ASD
is presented in Table 10. When the detector directly inputs
unprocessed audio-visual features into the FC layer for pre-
diction, LR-ASD achieves an mAP of only 90.5%. When
utilizing forwardGRU for temporalmodeling of audio-visual
features, there is a 2.7% increase in mAP, demonstrating
that the temporal context information of audio-visual fea-
tures contributes to enhancing the performance of the active
speaker detection model. Nevertheless, the forward GRU
operates unidirectionally, resulting in an information imbal-
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Table 9 Impact of feature
fusion

Fusion Params (M) FLOPs (G) mAP (%)

Transformer-based (Tao et al., 2021) 1.17 0.51 94.4

Add 0.72 0.51 93.6

Concate 0.77 0.51 94.0

LR-ASD 0.84 0.51 94.5

Bold represents the best result in the comparison methods

Table 10 Impact of detector Detector Params (M) FLOPs (G) mAP (%)

None 0.70 0.51 90.5

Forward GRU 0.76 0.51 93.2

Forward GRU (w channel attention) 0.76 0.51 93.4

Bidirectional GRU 0.82 0.51 94.0

Transformer (Vaswani et al., 2017) 1.49 0.51 93.0

LR-ASD 0.84 0.51 94.5

Bold represents the best result in the comparison methods

ance across the frames within the sequence. To this end, this
study employs two temporal modeling approaches: bidirec-
tional GRU and Transformer (Vaswani et al., 2017). These
methods ensure that each frame in the sequence can incorpo-
rate information from the entire sequence to aid in prediction.
Experiments demonstrate that the detector equipped with a
bidirectional GRU outperforms that equipped with a Trans-
former. In this task, information from frames near the current
detection frame is more beneficial for determining whether
the candidate is speaking. Hence, the advantage of the Trans-
former, which ensures that all frames in the sequence have an
equal opportunity to influence the current detection frame, is
no longer significant. In contrast, the forgetting mechanism
of the GRU enhances the informativeness of neighboring
frames, rendering it a better choice for this task. Finally,
building upon bidirectional GRU, LR-ASD adds a simple
channel attention module to refine bidirectional temporal
information, resulting in an optimal mAP of 94.5%. It is
worth noting that the detectorwith the backwardGRU is non-
causal. To this end, we evaluate a causal detector composed
of a forward GRU and a channel attention module. Com-
pared to the Transformer-based causal detector, this detector
not only improves model performance but also reduces the
overall model parameters by nearly half.

4.5.7 Module Combination

We investigate the impact of each module in LR-ASD on the
final performance in Table 11 and summarize the following
findings. (a) Rows 1 and 2 in Table 11 confirm the previous
conclusion (Köpüklü et al., 2021) that visual features have a
more significant impact on the results than audio features in
the task of active speaker detection. This phenomenonmaybe

attributed to the circumstance that in multi-person scenarios,
the visual information within the face sequence is capa-
ble of identifying the speaker, while the audio information
can only determine whether someone is speaking, without
specifically identifying the speaker. (b) Combining visual
and audio features can significantly improve performance.
Due to the varying contributions of visual and audio features,
the proposed feature fusion module aims to fully exploit the
potential of audio-visual features by dynamically assigning
weights to visual and audio features, thereby further improv-
ing performance. (c) After incorporating the detector for
temporal modeling of diverse features, the performance has
been greatly improved, highlighting the importance of the
detector module. (d) When all modules are applied together,
the model achieves the highest mAP of 94.5%, indicating
that each module in LR-ASD is indispensable.

4.5.8 Input Length

Table 12 illustrates the impact of training and testing LR-
ASD with sequences of varying lengths on its performance.
When the length of the input sequence is 1 frame, the mAP
of LR-ASD is only 71.0%. The research indicates that an
audio-visual episode lasting 5s contains an average of 15
words (Cutts, 2020; Tauroza & Allison, 1990), whereas a
segment of just 1 frame, which is approximately 0.04 s, may
not even cover a complete word, resulting in a low mAP.
As the number of input frames increases, the semantic infor-
mation contained in the sequence becomes more abundant,
consequently elevating LR-ASD’s mAP to 93.2%. However,
an increase in sequence length leads to a reduction in the num-
ber of video segments available for training. Therefore, when
the input frame number increases from 100 to 150 frames, it
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Table 11 Impact of module
combination

# Visual encoder Audio encoder Feature fusion Detector mAP (%)

1 ✔ 81.5

2 ✔ 51.0

3 ✔ ✔ 89.7

4 ✔ ✔ ✔ 90.5

5 ✔ ✔ 84.8

6 ✔ ✔ 53.5

7 ✔ ✔ ✔ 93.6

8 ✔ ✔ ✔ ✔ 94.5

Bold represents the best result in the comparison methods

Table 12 Impact of input length

Method Video frames mAP (%)

LR-ASD 1 (about 0.04 s) 71.0

5 (about 0.2 s) 84.1

10 (about 0.4 s) 87.6

25 (about 1 s) 90.9

50 (about 2 s) 92.2

100 (about 4 s) 93.2

150 (about 6 s) 92.0

200 (about 8 s) 92.1

Variable (about 1-10 s) 94.5

does not yield a significant improvement in performance. In
contrast, the experimental results confirm the conclusion of
previous research (Tao et al., 2021) that using variable length
sequences for training and testing can help the active speaker
detection model achieve optimal performance. Finally, since
LR-ASD is a non-causal model, the input data for real-time
processing needs to contain lookahead information. Com-
pared to the results (75.2%, 82.8%, and 87.9%) reported
in TalkNet (Tao et al., 2021) for lookahead of 5, 10, and
25 frames, LR-ASD improves performance by 8.9%, 4.8%,
and 3.0%, respectively. This indicates that the lightweight
and low computational cost LR-ASD is a promising choice
for real-time detection, particularly in resource-constrained
environments.

4.5.9 Inference Speed

We evaluate Light-ASD (Liao et al., 2023), LR-ASD, and the
state-of-the-art LoCoNet (Wang et al., 2024) on an NVIDIA
RTX 3090 GPU to measure the model inference time and
frames per second (FPS) under various numbers of input
frames. The results are presented in Table 13. In the extreme
case of single-frame input, LR-ASD achieves the fastest
inference time, with only 3.86ms, while the state-of-the-
art LoCoNet reaches as high as 9.54ms. As the number

Table 13 Comparison of inference speed

Method Video frames Time (ms) FPS

1 (about 0.04 s) 9.54 105

LoCoNet 1000 (about 40 s) 202.62 4935

(Wang et al., 2024) 2000 (about 80 s) 412.81 4845

4000 (about 160s) out of memory

1 (about 0.04 s) 4.49 223

Light-ASD (Ours) 1000 (about 40 s) 96.04 10412

(Liao et al., 2023) 2000 (about 80 s) 194.51 10282

10000 (about 400s) 1004.80 9952

11000 (about 440s) out of memory

LR-ASD 1 (about 0.04 s) 3.86 259

1000 (about 40 s) 77.31 12935

2000 (about 80 s) 154.93 12909

10000 (about 400s) 823.44 12144

13000 (about 520s) 1078.57 12053

of input frames increases, the GPU becomes fully utilized.
When the number of input frames reaches 2000, LR-ASD
achieves an FPS of up to 12,909, which is approximately
2.7 times higher than that of LoCoNet. However, as the
input frame number increases to 4000, the Video Random
Access Memory (VRAM) of the 3090 GPU is insufficient
to support inference for LoCoNet. In contrast, LR-ASD
can utilize the same VRAM for inferring inputs of up to
13,000 frames. Furthermore, in comparison to Light-ASD
presented in our conference publication, LR-ASD demon-
strates not only a faster inference speed but also the capability
to handle a larger number of input frames within the same
VRAM. The factors contributing to this phenomenon may
be attributed to two aspects. Firstly, LR-ASD possesses
smaller parameters and computations. Secondly, LR-ASD’s
encoders, designed by a straight-barrel structure, require less
VRAM during inference compared to Light-ASD’s dual-
path structure. Overall, in comparison to the state-of-the-art
approach and lightweight method, LR-ASD not only sup-
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ports longer input sequences under the same configuration
but also has a higher inference speed.

4.6 Quantitative Analysis

Following the state-of-the-art methods (AVA (Roth et al.,
2020), ASC (Alcázar et al., 2020), MAAS (Alcázar et al.,
2021), TalkNet (Tao et al., 2021), ASDNet (Köpüklü et al.,
2021), Light-ASD (Liao et al., 2023), LoCoNet (Wang et al.,
2024)), we conduct a performance breakdown of LR-ASD
on the benchmark AVA-ActiveSpeaker dataset based on the
number and size of faces. Figure 9 presents the performance
of various methods across diverse scenarios.

Figure 9a reports the impact of the number of visible faces
in video frames on model performance. As the number of
faces increases, the active speaker detection task becomes
more challenging, and the performance of all methods
degrades accordingly. Despite adopting a single-candidate
input strategy to reduce computational complexity, LR-ASD
demonstrates remarkable competitiveness across scenarios
with varying numbers of visible faces. It outperforms the
majority of methods employing multi-candidate input strate-
gies (ASC, MAAS, and ASDNet), ranking second only to
the state-of-the-art LoCoNet. This indicates that LR-ASD
is capable of extracting refined and reliable audio-visual
information from the current candidate, enabling accurate
prediction without introducing relational context informa-
tion between multiple candidates.

Fig. 9 Performance breakdown

Figure 9b illustrates the impact of varying face sizes on
the performance of active speaker detectionmethods. Herein,
the validation set is partitioned into three subsets based on
the width of the detected faces: large (facial widths exceed-
ing 128 pixels), medium (facial widths ranging between 64
and 128 pixels), and small (facial widths below 64 pix-
els). Although the performance of all methods decreases
with decreasing face size, the performance of LR-ASD
remains secondonly to the state-of-the-art LoCoNet. Further-
more, LR-ASD achieves a state-of-the-art mAP of 77.8% in
scenarios featuring small-sized faces, aligning with the per-
formance of LoCoNet.

In summary, LR-ASD, as a lightweight solution for active
speaker detection, achieves performance close to the state-
of-the-art LoCoNet in six scenarios using only a minimal
number of parameters, demonstrating its robustness.

4.7 Qualitative Analysis

Figure 10 illustrates the prediction results of four active
speaker detection methods, TalkNet, Light-ASD, LoCoNet,
and LR-ASD, on the AVA-ActiveSpeaker dataset along with
the corresponding groundtruth labels. Figure 10a, b show
challenging scenes featuring 2 and 3 small-sized faces,
respectively. In Fig. 10a, LR-ASD accurately predicts the
active speaker in the full-shot (Rao et al., 2020) scene, in
contrast to the false positive results obtained by TalkNet and
the false negative outcomes of Light-ASD and LoCoNet.
Additionally, bothLR-ASDand the state-of-the-art LoCoNet
accurately identify the active speaker in all framesofFig. 10b,
whereas the second-ranked TalkNet correctly identifies the
active speaker in only one frame. Overall, LR-ASD enhances
the competitiveness of active speaker detection methods
employing a single-candidate input strategy in challeng-
ing scenarios with multiple small-sized faces. This can be
attributed to the compact and ingenious design of LR-ASD,
which facilitates the model in learning common features of
speaking behavior.

Subsequently, we summarize 5 categories of failure pre-
dictions in LR-ASD and present them in Fig. 11. (a) Error
annotation. The dataset (Roth et al., 2020) contains a few
erroneous annotations, particularly in dubbed movies. (b)
Lip movement. Someone is speaking off-screen, while the
on-screen characters exhibit lip movements such as eating or
yawning. (c) Blurred face. Some videos have lower quality,
with the entire frame appearing blurry. (d) Occluded face.
The region around the speaker’s lip is occluded, resulting
in the loss of relevant visual information. (e) Head pose.
The speaker faces the camera sideways, making it difficult to
observe changes in the lip region. The categories (a) and (c)
of failure predictions can be solved by improving data qual-
ity. As for (b), (d), and (e), it is difficult for the model to make
accurate predictions solely based on limited facial informa-
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Fig. 10 Comparison of results for TalkNet (Tao et al., 2021), Light-
ASD (Liao et al., 2023), LoCoNet (Wang et al., 2024), and LR-
ASD in challenging scenarios within the validation set of the AVA-

ActiveSpeaker dataset. Red boxes indicate inactive speakers and green
boxes indicate active speakers (Color figure online)

tion. It may need to be solved by adding information on the
speaker’s body or environment, but this will undoubtedly sig-
nificantly increase the computational burden. Therefore, how
to maintain the model lightweight while further improving
performance in active speaker detection tasks is a problem
worth further exploration.

4.8 Discussion

4.8.1 Scene Scalability

To validate the feasibility of the proposed methods in more
challenging scenarios, we evaluate the performance of LR-
ASD and Light-ASD using the EasyCom dataset (Donley
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Fig. 11 Categories of failure predictions. The red and green boxes
respectively indicate inactive and active speakers in the labels (Color
figure online)

Table 14 Comparison of mAP (%) on the EasyCom dataset (Donley et
al., 2021)

Method Training set
AVA EasyCom AVA & EasyCom

Light-ASD (Ours) 53.1 84.9 90.1

LR-ASD 57.8 86.4 90.9

Bold represents the best result in the comparison methods

et al., 2021). This is a multi-modal augmented reality
(AR) dataset comprising approximately 6h of egocentrically
recorded conversational video using AR glasses in a noisy
restaurant-like room to address the cocktail party problem.
The experimental results presented in Table 14 indicate that
LR-ASDconsistently outperformsLight-ASDacross various
experimental settings. Overall, LR-ASD trained solely on the
AVA-ActiveSpeaker dataset not only comprehensively out-
performs Light-ASD on conventional active speaker detec-
tion datasets (AVA-ActiveSpeaker, Talkies, Columbia, and
RealVAD), but also maintains a performance advantage of
4.7% on the challenging augmented reality dataset. This
indicates that the improvements made by LR-ASD to Light-
ASD in feature fusion and temporal modeling facilitate the
extraction of more refined speaker features by LR-ASD,
thereby demonstrating more robust performance across dif-
ferent datasets. Concurrently, LR-ASD pre-trained on the
AVA-ActiveSpeaker dataset exhibits the capability for rapid
adaptation to novel scenes through fine-tuning.

4.8.2 Task scalability

We utilize the largest in-the-wild facial expression recog-
nition dataset, FERV39k (Wang et al., 2022), to assess the
feasibility of extending the proposed active speaker detec-
tion methods to other tasks. This dataset comprises nearly
39k video clips labeled with 7 basic facial expressions.
Since the FERV39K dataset does not contain audio data
and the facial expression recognition task requires a unique
prediction of the input face sequence, Light-ASD and LR-
ASD remove the audio feature encoder and add global
average pooling processing sequence temporal information
after the detector to meet the task requirements. The experi-
mental results in Table 15 indicate that LR-ASD performs
significantly better than classical baseline methods in the
facial expression recognition task, including C3D utilizing
3D convolutions and R(2+1)D constructed with combina-
tions of 2D and 1D convolutions. As for the state-of-the-art
method (Li et al., 2023) designed for this task, LR-ASD
achieves comparable performance with only about 3% of
its parameters, with unweighted average recall (UAR) equal
and weighted average recall (WAR) lagging by only 2.8%.
It is worth noting that fine-tuning models pre-trained on the
AVA-ActiveSpeaker dataset does not lead to performance
improvements in this new task, possibly attributable to sig-
nificant differences in the feature focus between the two
tasks. Among these tasks, the facial expression recognition
task emphasizes changes in facial features across the entire
sequence, while the active speaker detection task prioritizes
the match of lip movements with the corresponding audio.
Therefore, the model initialized with weights pre-trained on
the AVA-ActiveSpeaker dataset still needs to learn essen-
tial features from scratch for facial expression recognition.
Finally, compared to Light-ASD, LR-ASD exhibits better
scalability in the facial expression recognition task, high-
lighting its effectiveness in extending to tasks involving facial
analysis.

Table 15 Comparison of
performance on the FERV39k
dataset (Wang et al. 2022)

Method Avenue Params (M) UAR (%) WAR (%)

C3D (Tran et al., 2015) ICCV’15 78.02 22.7 31.7

R(2+1)D (Tran et al., 2018) CVPR’18 33.18 31.6 41.3

M3DFEL (Wang et al., 2023) CVPR’23 – 35.9 47.7

IAL (Li et al., 2023) AAAI’23 19.08 35.8 48.5

Light-ASD (Ours) CVPR’23 0.74 33.8 44.4

Light-ASD∗ (Ours) CVPR’23 0.74 33.9 44.9

LR-ASD – 0.51 34.8 45.8

LR-ASD∗ – 0.51 35.8 45.7

Bold represents the best result in the comparison methods
∗:pre-trained on the AVA-ActiveSpeaker dataset
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5 Conclusion

In this study, a lightweight and robust network for active
speaker detection, named LR-ASD, is proposed. The key
lightweight features of LR-ASD include inputting a single
candidate, splitting 2D and 3D convolutions to separately
extract audio and visual features, and employing simplemod-
ules for multi-modal feature fusion and temporal modeling.
The results on the benchmark dataset (Roth et al., 2020) indi-
cate that LR-ASD reduces the model parameters by 97.6%
and FLOPs by 89.5% compared with the state-of-the-art
method (Wang et al., 2024), withmAP lagging by only 0.7%.
Subsequently, in cross-dataset testing without fine-tuning on
three public datasets (Alcázar et al., 2021; Chakravarty &
Tuytelaars, 2016; Beyan et al., 2020), LR-ASD achieves
state-of-the-art performance, demonstrating its outstanding
robustness. Finally, LR-ASD has exhibited good scalability
in augmented reality environments (Donley et al., 2021) and
the facial expression recognition task (Wang et al., 2022).
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