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Abstract—In the era of Big Data, large-scale machine learning
models have revolutionized various fields, driving significant ad-
vancements. However, large-scale model training demands high
financial and computational resources, which are only affordable
by a few technological giants and well-funded institutions. In this
case, common users like mobile users, the real creators of valuable
data, are often excluded from fully benefiting due to the barriers,
while the current methods for accessing large-scale models either
limit user ownership or lack sustainability. This growing gap high-
lights the urgent need for a collaborative model training approach,
allowing common users to train and share models. However, exist-
ing collaborative model training paradigms, especially federated
learning (FL), primarily focus on data privacy and group-based
model aggregation. To this end, this paper intends to address this
issue by proposing a novel training paradigm named decentralized
relay learning (DeRelayL), a sustainable learning system where
permissionless participants can contribute to model training in
a relay-like manner and share the model. In detail, this paper
presents the architecture and workflow of DeRelayL, designs incen-
tive mechanisms to ensure sustainability, and conducts theoretical
analysis and numerical simulations to demonstrate its effectiveness.

Index Terms—Relay learning, decentralized model training,
sustainable model training, federated learning, blockchain.

Received 13 December 2024; revised 26 February 2025; accepted 2 April
2025. Date of publication 7 April 2025; date of current version 6 August 2025.
This work was supported by Guangdong-Hong Kong-Macao Joint Laboratory
for Emotional Intelligence and Pervasive Computing, Artificial Intelligence Re-
search Institute, Shenzhen MSU-BIT University. Recommended for acceptance
by J. Kang. (Corresponding author: Xiping Hu.)

Haihan Duan and Runhao Zeng are with the Artificial Intelligence Re-
search Institute, Shenzhen MSU-BIT University, Shenzhen 518172, China,
also with the Guangdong-Hong Kong-Macao Joint Laboratory for Emotion
Intelligence and Pervasive Computing, Shenzhen 518172, China (e-mail: du-
anhaihan@smbu.edu.cn; runhaozeng.cs@gmail.com).

Tengfei Ma and Yuyang Qin are with the Artificial Intelligence Research
Institute, Shenzhen MSU-BIT University, Shenzhen 518172, China, also with
the Guangdong-Hong Kong-Macao Joint Laboratory for Emotion Intelli-
gence and Pervasive Computing, Shenzhen 518172, China, and also with the
The Chinese University of Hong Kong, Shenzhen 518172, China (e-mail:
121090406@link.cuhk.edu.cn; yuyangqin1@link.cuhk.edu.cn).

Wei Cai is with the School of Engineering and Technology, University of
Washington, Tacoma, WA 98402-3100 USA (e-mail: weicaics@uw.edu).

Victor C. M. Leung is with the Artificial Intelligence Research Institute,
Shenzhen MSU-BIT University, Shenzhen 518172, China, and also with the
Department of Electrical and Computer Engineering, University of British
Columbia, Vancouve, BC V6T 1Z4, China (e-mail: vleung@ieee.org).

Xiping Hu is with the Artificial Intelligence Research Institute, Shenzhen
MSU-BIT University, Shenzhen 518172, China, also with the Guangdong-
Hong Kong-Macao Joint Laboratory for Emotion Intelligence and Pervasive
Computing, Shenzhen 518172, China, and also with the School of Medical
Technology, Beijing Institute of Technology, Beijing 100090, China (e-mail:
huxp@bit.edu.cn).

This article has supplementary downloadable material available at https://doi.
org/10.1109/TMC.2025.355854, provided by the authors.

Digital Object Identifier 10.1109/TMC.2025.3558544

I. INTRODUCTION

IN THE era of Big Data, the rise of large-scale machine learn-
ing models has revolutionized various fields, from natural

language processing to computer vision, healthcare, education,
and beyond. These models are usually trained on enormous
datasets and have demonstrated remarkable capabilities in terms
of accuracy, generalization, and predictive ability, which drives
significant advancements in technology and scientific discov-
ery [1]. Moreover, the development and deployment of large
models are no longer merely trends but necessities for fully
capitalizing on the opportunities presented by the Big Data era.
Therefore, as the volume of data continues to grow exponen-
tially, advanced machine learning techniques need to harness
the information from the available data.

However, a major problem has emerged: although individuals,
organizations, and even small enterprises often possess valuable
data, completely training large-scale models is obviously beyond
the financial and technical ability of common users [2], [3].
Specifically, the computational resources required to train a
large-scale model completely can only be afforded by a few
technological giants and well-funded institutions [1]. These
institutions may purchase training data from third parties, or
even directly scrape data from websites without payment, thus
the original creators of the knowledge (common users) find it
hard to obtain profits. As a result, this forms a growing gap
between the giants and common users with insufficient computa-
tional resources (e.g., common users using only mobile devices),
limiting common users from enjoying the societal benefits of
intelligent data-driven insights in the Big Data era created by
themselves [4].

In practice, using the application of large language models
(LLMs) [1] as an example, common users can actually utilize
LLMs based on two approaches provided by the giants. (1) The
first way is close-source, in which the common users need to pay
for the use. The prospective users are usually charged by monthly
subscription or accumulation of utilized input/output tokens. In
this case, the common users can only obtain the rights to use
the models online, but the model weights are not directly acces-
sible to them, i.e., the common users do not truly possess the
models. (2) The second approach is open-source, where some
giants may voluntarily contribute well-trained models for the
public to download freely. The common users can really obtain
model weights in this situation, and the giants can earn non-
monetary profit, such as reputation. However, the open-source
approach is hard to achieve sustainability, since there lacks an
explicit monetary incentive to maintain the model update [5].
To this end, this study seeks to address this pressing issue by
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proposing a sustainable decentralized learning system in which
participants can train like a relay and collaboratively share the
model, named Decentralized Relay Learning (DeRelayL), i.e.,
participants who have sufficient contributions to the relay-like
model training can possess the trained model weights, acting
like semi-open-source.

In recent years, some researchers have discussed the col-
laborative model training methodologies. Among them, fed-
erated learning (FL) is the most notable framework for col-
laborative model training with privacy preservation [6], [7].
Traditional FL relies on centralized model parameter aggrega-
tion and faces challenges like performance degradation with
non-IID data [6], [8], [9]. Moreover, other researchers also
investigate decentralized FL [10], as well as blockchain-enabled
FL [11], which mainly studies decentralized model parameter
aggregation [12], [13] and decentralization-related topics [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23]. However, the
core motivation of FL differs significantly from the proposed
DeRelayL, where FL typically revolves around the challenges
of the group-based aggregation process, but DeRelayL focuses
more on motivating independent participants to sustainably
contribute to and benefit from model training. Besides the
FL, other existing studies also have investigated collaborative
model training, discussing collaborations in volunteer comput-
ing environments [24], [25], secure multi-party collaborative
model training [26], [27], decentralized LLM training [28],
etc. The most relevant study named relay learning presented
by Bo et al. [29], but they focused on security and privacy
issues in relay-like model training between clinical multi-sites,
so the motivation and application are quite different from our
study.

In this paper, we aim to build a sustainable decentralized
learning system based on blockchain, where permissionless
participants can collaboratively train and share models. The
models will be passed among participants in the learning system,
following a relay-like learning process. In each round, the model
evolves based on the previous round’s updates, creating a contin-
uous chain of collaborative learning. Only the participants who
have contributed to the model training or maintaining the system
operation can share the models, which could ensure that each
participant’s contribution is recognized and rewarded. Supported
by blockchain, this procedure fosters a decentralized and collab-
orative learning environment, where different trainers can take
over the process at different stages, allowing for a more flexible
and efficient model development. Therefore, the paradigm op-
erates like a relay, where the task is passed from one participant
to another in sequence, with each participant contributing their
part in a coordinated manner, so-called Decentralized Relay
Learning (DeRelayL).

The contributions of this paper can be concluded as follows:! This paper proposes a novel learning paradigm regarding
the sustainable decentralized collaborative model training.
Specifically, we introduce the architecture of DeRelayL
based on blockchain and present a detailed system work-
flow. To the best of our knowledge, there are few existing
studies that share the same considerations.! To maintain the sustainability of DeRelayL, we formulate
the utilities of all participants and design a corresponding

incentive mechanism to guarantee the participants’ Indi-
vidual Rationality (IR) and Incentive Compatibility (IC).! This paper conducts a detailed theoretical analysis to for-
mulate a condition set for the incentive mechanism. More-
over, we also design a numerical simulation to demonstrate
the effectiveness of the incentive mechanism and the sus-
tainability of DeRelayL.! Due to the complexity of DeRelayL, this paper can only
present the key motivation and system workflow, while
some techniques in realistic implementation are not mature
enough. To this end, we also comprehensively discuss the
potential challenges and research directions of DeRelayL.

II. RELATED WORK

In this section, we mainly discuss existing collaborative model
training paradigms, including federated learning (FL) and other
related collaborative training methods, to clarify the different
motivations and scenarios between the existing methodologies
and the proposed DeRelayL.

A. Federated Learning

Federated learning (FL) is a distributed machine learning
approach that enables multiple nodes to collaboratively train
a shared model while keeping local data private [6]. Generally,
FL assumes that participants exchange model updates with a
central server that aggregates them, instead of sharing raw data.
Therefore, the typical FL algorithm studies the aggregation of
gradients, such as FedAvg [6]. On the other hand, some studies
point out that FL faces the challenge of performance degradation
in non-IID data [8], [9]. Many solutions have been proposed
to solve the problem, including optimizing the model aggrega-
tion [30], [31], knowledge distillation [32], regularizing training
in distributed nodes [33], and Bayesian reformulation [34].
Besides the basics of FL, some researchers also study related top-
ics, such as balancing personalization and generalization [35],
acceleration [36], [37], privacy and fairness preserving [38],
[39].

On the other hand, some researchers have also noticed that
traditional FL relies on a centralized server for the aggrega-
tion of model parameters or gradients, so decentralized FL
has been studied in recent years [10]. The decentralized FL
mainly focuses on distributed model parameter aggregation
between the neighboring participants [12], [13]. Referring to
decentralization, blockchain is the cutting-edge implementation
of decentralized systems, and many researchers have paid at-
tention to blockchain-enabled FL [11], studying the architec-
ture of decentralized FL [14], consensus algorithm [15], [16],
[40], decentralized aggregator assignment [17], [18], resource
trading and allocation [19], [20], defending against poisoning
attacks [21], [22], incentive mechanism design [23], etc.

However, the motivation of FL shows a significant difference
from that of the proposed DeRelayL. As shown in Fig. 1, we
demonstrate a comparative diagram with the simplest case to
show the difference between FL and DeRelayL. FL mainly
discusses the collaborative model training among a group, typ-
ically involving an aggregation process per round, but DeRe-
layL emphasizes incentivizing a sustainable collaborative model
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Fig. 1. A comparative diagram between federated learning and relay learning.

training, which is expected to present like a relay among multiple
independent participants, who can obtain the model if they have
contributions to the DeRelayL system. Although Buyukates
et al. [41] presented similar considerations, where they proposed
a proof-of-contribution-based design for collaborative machine
learning on the blockchain, the trained model still belongs to
the initiator rather than the participants. Similarly, subsequent
studies of contribution proof can refer to Ebrahimi et al. [42]
and Yazdaninejad et al. [43].

B. Other Collaborative Model Training

Although FL is the best-known paradigm of collaborative
model training, some other methodologies present different
considerations. Diskin et al. [24] proposed a framework for
distributed deep learning in open collaborations (DeDLOC),
addressing the challenges posed by volunteer computing en-
vironments. Ryabinin et al. [25] introduced a decentralized
mixture-of-experts (DMoE) model designed to leverage volun-
teer computing for training large neural networks, especially
in distributing the computational workload across unreliable
hardware. Zheng et al. [26] presented Cerebro, a platform de-
signed for secure multi-party cryptographic collaborative learn-
ing, avoiding exposing sensitive information when combining
data from multiple organizations. The most similar motivation
was mentioned by Gao et al. [28], who proposed a theoreti-
cal design of a decentralized LLM and used GradientCoin to
incentivize model training, but it lacks a verification of the
training, so unreliable participants will tend to cheat for incentive
without real training. The most relevant study was proposed by
Bo et al. [29], in which the authors also applied the term relay
learning to present their paradigm. However, they mainly consid-
ered the security and privacy issues in relay-like model training
between clinical multi-sites (one by one), so the motivation and
application are quite different from our study.

Overall, few existing studies about collaborative model train-
ing have shown the same consideration as our proposal, which
intends to build a decentralized collaborative model training
system that can sustainably work.

III. SYSTEM DESIGN

This section will present the system design. First, we will
discuss the motivation and challenges regarding the proposed
blockchain-based DeRelayL system, which also reflects our core
considerations during the architecture design. Then, we will
illustrate the system architecture, addressing the aforementioned
challenges. At last, the corresponding mechanism design and
problem formulation will be investigated.

A. Motivation and Challenges

As discussed in Section II (also refer to Fig. 1), the DeRe-
layL shows significant differences compared with FL [44]. In
conclusion, the motivation of DeRelayL is to build a sustain-
able decentralized learning system in which participants can
train like a relay and collaboratively share the model. To this
end, this subsection will first clarify the challenges following
with the logic of the proposed motivation.

C1. Sustainability of the training system: Generally, the par-
ticipants of the training system will keep the strategies that can
maximize their utilities. Under this assumption, the open-source
model is unsustainable, e.g., if everyone can obtain the model
without cost, nobody will have the motivation to train the
model, since the training process has cost, which will decrease
the participant’s utility. Therefore, the system design needs to
guarantee that the model can be obtained only if the participants
have contributed to the whole procedure of DeRelayL, e.g.,
participating in the model training or supporting the blockchain
system operation.

C2. Model weight leakage before the model training: As-
suming that a participant wants to contribute to the system by
training models, the most common and efficient way is to ask
the model owner to send the model to the participant. This step
faces a risk that the participant may not fulfill the training duty
after obtaining the model, especially in a decentralized system,
which means that the participant can obtain a model without
any cost. To address the challenge, there should be punishment
for the dishonest participants, so the prospective trainers should
deposit a certain cost before obtaining the model (the deposit cost
should be higher than the model’s value), which will be returned
after honest behavior. In an extreme situation, if the participants
cannot finish the model training subjectively/objectively, the
process is equivalent to a transaction between the participants
and the system, where the participants spend the deposit cost to
buy the model.

C3. Dishonest model owners that provide fake models to the
participants: As we discussed in C2, the participants need to
deposit a certain cost for requesting the model and withdraw
the cost after training. However, dishonest model owners may
provide fake models to the participants or even do not respond.
In this case, the prospective trainers will lose the model and the
deposit at the same time. Therefore, the model owner should also
deposit a certain cost by constructing a smart contract with the
prospective trainers, which will be returned at the same time as
the deposit from the trainer is returned. More importantly, under
this setting, the model owner and the trainer form a community
of interests, so there should be a two-way selection mechanism
between model owners and prospective trainers for them to find
a reliable partner.

C4. Evaluation of model training: In a decentralized system,
it is difficult for model trainers to prove the completed training
process. For instance, dishonest trainers can add some white
noise to the model to pass the check of model hash, claiming
that they finished the model training. Therefore, it requires an
evaluation to validate the training, which should be provided by
a random third party. Then, a new challenge appears, how to
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Fig. 2. System architecture and workflow of sustainable decentralized relay learning (DeRelayL).

determine whether the trainer has honestly finished the training.
Moreover, the black-box training of neural networks and differ-
ent data distributions between trainers and the evaluation data
providers will also influence the performance evaluation, e.g., it
is hard to avoid that a dishonest but lucky trainer obtained the
highest performance by only adding white noise. To this end, a
relatively fair evaluation method is necessary.

C5. Model weight leakage during the performance evalua-
tion: To evaluate the performance, it requires the output from
the trained model by inputting testing data. Obviously, it is unre-
liable that the trainers test their models by themselves, while the
evaluation of a third party will face the risk of model weight leak-
age during the transmission. To address the challenge, this paper
considers applying fully homomorphic encryption (FHE) [45]
to transmit model weights, where FHE is an encryption scheme
that enables functions to be run directly on encrypted data while
yielding the same encrypted results as if the functions were run
on plaintext [46]. With FHE, it is not necessary to calculate
testing output using the original trained model, avoiding the
model weight leakage.

C6. Verification of the performance evaluation: Following
C5, the trained model after FHE can be broadcast in the system,
so the encrypted model can be obtained by every user. This
means that, if the testing data and public key of FHE are publicly
available, every user can verify the claimed performance, ac-
cording to the easy-to-check principle in a decentralized system.
This public verification from other users is the fundamental
guarantee of a valid training record.

C7. Re-training the model after testing data publication: The
performance evaluation process contains a hidden pre-condition
that the testing data should be published before the evaluation.
Therefore, it is possible that trainers re-train their models based
on training data to pass the performance evaluation. To solve
the problem, the system should have a mechanism to guarantee
the models in the performance evaluation are trained before
publishing the testing data.

C8. Collusion between testing data publisher, performance
verifier, and trainer: Decentralized systems have a common
challenge that some participants may collude with each other.
The folking of blockchain can naturally address the challenge
since other honest participants who find out the dishonest be-
havior will spontaneously follow the honest blocks. Globally,
the collusion can only obtain short-term benefits, while, at a
long-term level, honest participants will share more powerful
models with the increase of the blockchain. Therefore, rational
participants will behave normally to seek long-term benefits.

B. System Architecture and Workflow

After discussing the design motivation and challenges in Sec-
tion III-A, this subsection will introduce the system architecture
of sustainable Decentralized Relay Learning (DeRelayL), as
shown in Fig. 2, by discussing the blockchain design, user roles,
and workflow.

The DeRelayL system is based on blockchain, where we de-
fine four kinds of blocks according to the different functions dur-
ing different stages, including deposit block, encryption block,
testing block, and settlement block. 1) Deposit Block (DB):
to store deposit smart contracts, which are the fundamental
guarantee of model transmission; 2) Encryption Block (EB):
to publish information about FHE and record the hash value
of trained models; 3) Testing Block (TB): to publish testing
data and record the hash value of trained models encrypted by
the public key in Encryption Block using FHE; 4) Settlement
Block (SB): to verify and store the performance of trained
models. Note that, the mining process is identical for all blocks,
where the core difference is that the miners should act in different
roles and include different data corresponding to the stage. By
default, we utilize the Proof of Work (PoW) [47] consensus
model for block generation as an example, while other consensus
models are also available. The detailed usage of each block will
be introduced after the discussion of the workflow. In Fig. 2, we
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illustrate the SBn−1 in Roundn−1 and all blocks in Roundn.
The whole workflow of the DeRelayL system has 11 main steps:

(1) Trainer Negotiation (Second-Price Auction): As we men-
tioned, SB records the performance of trained models, as well
as their corresponding trainers and resources (details of SB will
be discussed in Step (11)). Therefore, after the confirmation of
SBn−1, all nodes in the system can find the models’ performance
of the (n-1)−th training round. Abstractly, all participants can be
denoted as trainers T , where Tn−1 are trainers inRoundn−1 and
also the model owners in Roundn, and Tn are trainers who will
negotiate with model owners Tn−1 to obtain a model for training
in Roundn. This negotiation will determine that the trainers
Tn will follow which model owner Tn−1 to train the model,
which is a two-way selection procedure. Moreover, each ofTn−1
and Tn should also determine the deposit cost to participate
in Roundn. In this paper, we simply apply the second-price
auction [48] to complete the procedure (details will be discussed
in Section III-C1), while other two-way selection methods may
also fit this scenario. Note that this paper assumes that the single
trainer can only complete the training of one model in each
round, but model owners can select multiple trainers if they have
enough coins to deposit (also known as total deposit budget B
in Section III-C1).

(2) Build Deposit Smart Contract: After the two-way selec-
tion, Tn−1 and Tn who completed the procedure should build
a smart contract to deposit the predetermined cost. The smart
contract should be signed by both Tn−1 and Tn. The deposit
will be returned if the trained model shows good performance in
the testing data, but it also faces a risk of loss if the trainers cannot
perform normally or even do not finish the training (details can
refer to Step (11)). Therefore, the two-way selection in Step (1)
is necessary, because both Tn−1 and Tn hope to find a reliable
partner to minimize risk.

(3) Broadcast Deposit Smart Contracts: The deposit smart
contracts will be broadcast after the double signature. DB miners
will include the smart contracts and construct DBn at t0n when
they find Nounce0n. The DB block contains a coinbase trans-
action to earn a mining reward, which depends on the included
deposit smart contracts, prompting miners to pack records as
much as possible. This setting is similar to gas fees on a public
blockchain (e.g., BitCoin [47]), while the incentive is from the
mechanism rather than the users.

(4) Model Transmission: After the publishing of DB at t0n, the
system enters the training period, where trainers Tn will receive
the model from Tn−1. In Fig. 2, we illustrate an example that
T k
n will receive a model M j

n−1 from T j
n−1.

(5) Model Training: After the model transmission, the trainer
T k
n will train the model using the computational resource and

data, where we use Mk
n to denote the trained model. In an

unreliable decentralized system, some trainers may fail to finish
the model training due to unknown reasons. Correspondingly,
as a punishment, the deposit of both Tn−1 and Tn will not be
returned.

(6) Broadcast Hash of Trained Model: After the model train-
ing, trainers will broadcast the hash value of trained models
to claim that they completed the training process, denoted as
Hash(Mk

n).

(7) Verification of Encryption Block Miners: In this step, EB
miners will check the hash value of the trained model, verifying
Hash(M j

n−1) "= Hash(Mk
n), which means the updated model

is at least different from the original one. Thanks to the trans-
parency of blockchain, the required information can be easily
obtained from the previous blocks, e.g., obtain T j

n−1 from DBn

according to T k
n , and then obtain Hash(M j

n−1) from EBn−1

based on T j
n−1. When finding Nounce1n at t1n, the EB miners

will include all records that passed the hash check, containing
metadata (T j

n−1 and T k
n ) and Hash(Mk

n). More importantly,
there is a necessary step that EB miners need to calculate a
public key PKn for FHE. EB miners are special compared with
other block miners, because they can obtain trained models by
their private key of FHE. On the one hand, due to the cost of
generating the FHE key pairs, malicious miners may upload a
random number asPKn, influencing the subsequent steps of the
system. On the other hand, the model is provided as a reward,
incentivizing miners to actively participate and preventing EB
miners to access valuable models and exit the system without
further contribution. Therefore, obtaining a trained model can
guarantee incentive compatibility (IC) for EB miners and mo-
tivate them to behave honestly. As long as EB miner does not
disrupt the process and their actions contribute positively to the
overall integrity of the system, the system remains sustainable.

(8) Fully Homomorphic Encryption using PKn: After the
publishing of EB at t1n, all participants of the system can ob-
tain PKn. Then, the trainers can encrypt their trained model
using FHE by PKn, denoted as FHE(Mk

n), and the corre-
sponding hash value can be formulated as Hash(FHE(Mk

n)).
This step can fix the trained models before publishing
the testing data, ensuring the trainers cannot re-train the
models.

(9) Broadcast Hash of Encrypted Trained Model: The trainers
will broadcast Hash(FHE(Mk

n)) after model encryption. The
TB miners will include the hash values and construct TBn

at t2n when they find Nounce2n. Besides the hash values, the
TB miners should also provide testing data to evaluate the
performance of trained models, including testing input TIn and
testing ground truth TGn (if the testing data is too large to store
in the blockchain, the TB miners can also provide a decentralized
storage address of the data). The testing data are publicly avail-
able, which corresponds to three advantages: 1) all participants
can verify the results of performance evaluation, ensuring the
procedure is valid with consensus of most participants; 2) the
quality of the testing data can be supervised by all participants,
and other participants can choose to folk the training blockchain
if the quality is unsatisfactory; 3) the testing data can be uti-
lized as training data in the next round, globally contributing
additional information to the whole DeRelayL system.

(10) Broadcast Testing Outputs of Model and Encrypted
Model: After the publishing of TB at t2n, all trainers are accessi-
ble to the testing data TIn and TGn. The trainers can calculate
the testing outputs of their models asOk

n = Mk
n(TIn). Then, the

trainers will broadcast the outputs Ok
n and the encrypted models

FHE(Mk
n) (discussed in Step (8)) for performance evaluation.

(11) Verification of Settlement Block Miners: The last step
is most critical, which involves four parts: model performance
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verification, packing valid training records, returning quali-
fied deposits, and additional citation reward. 1) Model per-
formance verification: The SB miners should verify whether
the received outputs Ok

n are generated from Mk
n based on

FHE, without obtaining the original model Mk
n . The SB min-

ers will encrypt received outputs Ok
n and testing input TIn

from TBn using the PKn from EBn, denoted as FHE(Ok
n)

and FHE(TIn). Then, SB miners will calculate new out-
puts using received encrypted models FHE(Mk

n) and en-
crypted testing input FHE(TIn), denoted as FHE(O′kn ) =
FHE(Mk

n)(FHE(TIn)). Moreover, the SB miners will also
calculate a quantitative performance index P k

n based on pre-
defined evaluation metrics (e.g., accuracy, mean-square error
(MSE), precision), using the received outputs Ok

n. After that,
the SB miners will firstly verify whether the received encrypted
model is the one confirmed in TBn, i.e., Hash(FHE(Mk

n))
should be equal to received Hash(FHE(M ′k

n )). Secondly, the
SB miners will verify whether the received outputs are calculated
from the claimed model, i.e., FHE(O′kn ) should be equal to
FHE(Ok

n) according to the features of FHE [45]. Note that,
due to the transparency, the verification can be checked by
any other participant, ensuring the validity. 2) Packing valid
training records: After the verification, SB miners will include
valid training records into the block SBn, including the original
model owners T j

n−1, current trainers T k
n , and corresponding

model performance indexes P k
n . 3) Returning qualified de-

posit: Generally, the verification records in SBn means that
the trainer T k

n has finished the training process, and the smart
contracts built in Step (2) will return the deposit to bothT j

n−1 and
T k
n . However, as discussed in C4 of Section III-A, lazy workers

can add very subtle white noise into the original model, which
will not significantly influence the model performance. In this
case, the updated model can also pass the verification, which
means lazy workers can obtain a model at nearly free cost. To
address the problem, we set a threshold to increase the risks
of participating in the training system, where only the trained
models which has performance ranking in top-K can return the
deposit cost for both original model owners T j

n−1 and trainers
T k
n . However, due to some uncertain factors, such as testing

data distribution and randomness in model training, the top-K
ranking mechanism cannot completely filter lazy workers, e.g.,
the model from a very lucky lazy worker may achieve better
performance than others. The aforementioned case is very spe-
cial with a low possibility, because a fundamental assumption of
the system is that the model performance will generally increase
with the honest model training behavior. In fact, the introduction
of the top-K ranking mechanism will also change the trainer
negotiation in Step (1), in which both original model owners
T j
n−1 and trainers T k

n will be more serious when evaluating and
selecting their partners. 4) Additional citation reward: Besides
returning the deposit, we also design a mechanism to reward the
original model owners T j

n−1 of the top-K models in Roundn,
named citation reward. Note that, the original model owners
T j
n−1 may not be the top-K models in Roundn−1. Therefore,

although there might be some very lucky lazy workers who
occupied the top-K positions in Roundn−1, the citation reward
can motivate honest trainers at a long-term level, since the

Algorithm 1: Trainer Selection Based on Deposit Bids.

1: Input: T = {(T1, bT1), (T2, bT2), . . ., (TQT , b
TQT )} as

the set of trainers and their corresponding deposit bids
bTi , MO’s deposit cost for one trainer bMO, and MO’s
total deposit budget B.

2: Output: Selected Trainers and their deposit amounts.
3: QSelected ← % B

bMO &
4: TSorted = Sort(T, 2) ◃ Sorted by bids in descending
5: for i = 1 to QSelected − 1 do
6: TSelected[i]← TSorted[i][1] ◃ Trainers
7: DDeposit[i]← TSorted[i+ 1][2] ◃ Deposits
8: end for
9: TSelected[QSelected]← TSorted[QSelected][1] ◃ Trainers

10: DDeposit[QSelected]← TSorted[QSelected][2] ◃ Deposits
11: Return TSelected, DDeposit

trainers T k
n may not choose the model to follow only based

on the ranking of Roundn−1, while other information of the
original model ownersT j

n−1 (e.g., historical rankings, frequency
of participation) will also be considered.

With the increase of training rounds, the above 11 steps will
repeat until the model ability converges to an ultimate level
without sufficient performance increment due to the limitation
of the model size, referring to scaling law [2], [3].

C. Formulation and Mechanism Design

In Section III-B, we utilize Tn−1 and Tn to denote original
model owners and trainers for a general understanding of the
cyclic system. In the following parts, we will apply abbreviations
of each role to better explain the formulation, i.e., model owner
(MO), trainer (T), deposit block miner (DBM), encryption block
miner (EBM), testing block miner (TBM), and settlement block
miner (SBM).

1) Trainer Negotiation Algorithm: In Step (1) of
Section III-B, the trainers will negotiate with the original model
owners to obtain an opportunity to join the model training, which
is a two-way selection that also determines the deposit cost of the
model owners and trainers. The two-way selection can be very
complex by considering many factors such as historical ranking
and participation frequency, but, to simplify the mechanism
modeling in this paper, we design a second-price auction [48]
that greedily selects model owners with higher ranking and
trainers with higher deposit willingness. At first, the model
owners will broadcast their pre-determined deposit cost bMO

to the trainers. The prospective trainers (totally QT trainers)
will send sealed messages to model owners to honestly provide
their reserve deposit bids bTi . After that, the model owners can
rank the prospective trainers based on the deposit bids. Then, a
model owner can greedily select prospective trainers following
Algorithm 1 constrained by the total deposit budget B (to select
total % B

bMO & trainers). The model owners will invite the selected
trainers to build deposit smart contracts by depositing the
second price, and, correspondingly, the prospective trainers will
greedily accept invitations from higher-ranking model owners.
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TABLE I
KEY ANNOTATIONS (IN THE ORDER OF APPEARANCE)

2) Problem Formulation and Incentive Mechanism Design:
To maintain sustainability, the incentive of DeRelayL (e.g.,
mining reward, model weights) should at least satisfy Individual
Rationality (IR) and Incentive Compatibility (IC) [4], [19],
[49], [50]:! Individual Rationality: All participants of the DeRelayL

system should obtain a non-negative utility. Otherwise,
the rational participants will not participate in the model
training of the DeRelayL system.! Incentive Compatibility: The incentive mechanism of the
DeRelayL system should ensure that participants with
normal behavior can obtain the maximum utility, which
means that behaving normally is the optimal strategy for
each participant.

Therefore, we will first formulate the utility (U) of each
participant in the DeRelayL system based on the revenue (R)
and cost (C). Key annotations are summarized in Table I.

(1) Model owner (MO): The utility of MO can be denoted:

UMO = RMO − CMO

= RMO
Now +RMO

Future − CMO
Deposit − CMO

Transmit (1)

where RMO
Now and RMO

Future refer to the 4) additional citation reward
as discussed in Step (11) of Section III-B. RMO

Now is the citation
reward of the current round, and RMO

Future is the revenue of the
future rounds, which will be calculated as a geometric series
since the future revenue has a discount rate. For the cost, MO
has deposit cost CMO

Deposit for each round, but the cost is likely to
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be returned if the selected trainers behave normally. Moreover,
MO also has transmission cost CMO

Transmit when sending the model
to the selected trainers.

(2) Trainer (T): The utility of T can be represented:

UT = RT − CT = RT
Now +RT

Future

− CTrain − CT
Deposit − CT

RecM − CEncrypt − CBroadcast

(2)

where RT
Now is the revenue of the current round, which contains

the revenue of the received model from MO RT
RecM and the

revenue of the model trained by T RT
TrainedM. And RT

Future is the
future revenue for additional citation reward, similar to MO. The
cost of T consists of five parts: 1) model training cost CTrain;
2) deposit cost CT

Deposit, which will be returned if behaving
normally; 3) cost of receiving the model from MOCT

RecM; 4) FHE
encryption cost of trained modelCEncrypt; 5) cost of broadcasting
encrypted model CBroadcast.

(3) Deposit block miner (DBM): The utility of DBM is:

UDBM = RDBM − CDBM

= RDBM
Include − CMine (3)

where RDBM
Include is the incentive of miners to include deposit smart

contracts as much as possible, so the revenue is proportional
to the quantity of included data. CMine is the cost of mining
the block, i.e., the computational cost of the PoW consensus
model. Note that all miners (DBM, EBM, TBM, SBM) have
the aforementioned RInclude and CMine. We also simply assume
the block generation intervals are almost identical for all stages,
thus the CMine is almost fixed.

(4) Encryption block miner (EBM): The utility of EBM can
be formulated:

UEBM = REBM − CEBM

= REBM
Include+RFHEM−CMine−CEBM

RecFHEM − CGenFHEKey

(4)

where REBM
Include is the incentive of including trained models’ in-

formation, containing metadata and hash values. Since the EBM
is responsible for generating the FHE key pair, the EBM can use
the private key to decrypt encrypted models, as discussed in Step
(7) of Section III-B. Thus, RFHEM is the revenue for decrypting
encrypted models, and CEBM

RecFHEM is the cost for receiving the
encrypted model (EB can only receive and decrypt the best one).
CMine is the mining cost, andCGenFHEKey is the cost of generating
the FHE key pair.

(5) Testing block miner (TBM): The utility of TBM is:

UTBM = RTBM − CTBM

= RTBM
Include +RGenTDCases − CMine − CGenTDCases (5)

where RTBM
Include is the incentive of including information of

encrypted models using FHE, containing metadata and hash
values. The TBMs are responsible for generating testing data,
so they will be rewarded RGenTDCases according to the number of
testing cases. Thus, there are corresponding costs of generating

testing cases CGenTDCases. Similar to other miners, CMine is the
mining cost.

(6) Settlement block miner (SBM): The utility of SBM can be
formulated:

USBM = RSBM − CSBM

= RSBM
Include +RVerify − CMine − CSBM

RecFHEMs − CVerify

(6)

where RSBM
Include is the incentive of including verification confir-

mation details, containing metadata and performance index. The
SBMs are responsible for verifying the performance of trained
models, so they will be rewardedRVerify according to the number
of verified models, corresponding to the cost for receiving all
encrypted models CSBM

RecFHEMs and verifying them CVerify. CMine

is the mining cost.
For participants, they have different strategies to choose from,

which will lead to different utilities. We utilize “Normal (N)” to
denote the participant behaves honestly following the procedure
of the DeRelayL system. Specifically, MO may choose to not
transmit the model to T (including transmitting fake weights),
so the strategy set of MO is {Normal (N), Not Transmitting
(NTm)}. For Ts, they may choose to not train the model (NTr)
or not broadcast the trained model (NBr), so the strategy set of T
is {Normal (N), Not Training (NTr), Not Broadcasting (NBr)}.
The DBM may choose to pack partial deposit smart contracts
(NPA) or pack improper ones (PI), thus the strategy set of DBM
is {Normal (N), Not Packing All (NPA), Packing Improper
Deposit Contracts (PI)}. Then, the EBM may not generate the
FHE key (NG), so the strategy set of EBM is {Normal (N), Not
Generating FHE Key (NG)}. For TBMs, they may upload im-
proper testing cases (IT), thus the strategy set of TBM is {Normal
(N), Improper Testing Cases (IT)}. Finally, the SBM may not
rank the trained models properly (IRa), so the strategy set of
SBM is {Normal (N), Improper Rank (IRa)}. The final utility
expressions of each strategy are listed in Table II, and the detailed
formulation, annotation, and explanation of each term can refer
to Table I and Appendix A, available online. Note that, in this
paper, we assume the knowledge used in model training is almost
equal for every round (or satisfies the same distribution), so the
model performance incremental from the current round/version
to the next round/version is approximate. Therefore, we intro-
duce C© to denote the value of the knowledge gap between two
adjacent model versions, which is also the unit of measurement
to unify the different values formulated in the DeRelayL system,
as well as for issuing incentives (cryptocurrency/coin).

After formulating the utilities of each participant, we need to
design an incentive mechanism to satisfy IR and IC. Specifi-
cally, to satisfy IR, the utilities of the “Normal” strategy should
be no less than 0. According to the calculation in Appendix B, the
reward (R) of each block should satisfy the following condition
set (T1 - T8):

T1: To guarantee IR of MO, we need to let UMO
N ≥ 0:

RCited ≥
(1− β) ·

(
QSelected · (1− s) · bMO + kTransmit · |M |

)

QMO
Selected

(7)
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TABLE II
UTILITIES OF DIFFERENT PARTICIPANTS’ STRATEGIES

T2: To guarantee IR of T, we need to let UT
N ≥ 0:

RCited ≥
(1− β)

QT
Selected · β

· (PComp ·D · τ · |M |

+ (1− s) · bT + kTransmit · |M |+ kEncrypt · |M |

+QBroadcast · kTransmit · kExpand · |M |

−
(
VRecM − V T

Now + 1
)
· C©

)
(8)

T3: To guarantee IR of DBM, we need to let UDBM
N ≥ 0:

RDeposit ≥
CMine

QDeposit
(9)

T4: To guarantee IR of EBM, we need to let UEBM
N ≥ 0:

RHashM ≥
1

QHashM
· (CMine + kTransmit · kExpand · |M |

+CGenFHEKey −
(
VFHEM − V EBM

Now

)
· C©

)
(10)

T5: To guarantee IR of TBM, we need to let UTBM
N ≥ 0:

QEncryptedM · REncryptedM +QCases · RCase

≥ CMine +QCases · CUnit
GenTDCase (11)

T6: To guarantee IR of SBM, we need to let USBM
N ≥ 0:

QVerifiedM · RVerifiedM +QVerifiedM ·QCases · RVerify

≥ CMine +QVerifiedM · kTransmit · kExpand · |M |

+QVerifiedM ·QCases · CUnit
Verify (12)

To satisfy IC, the utilities of the “Normal” strategy should
be greater than other strategies. According to Table II, some

participants’ other strategies have negative utilities, so they
will choose “Normal” obviously. Specifically, trainer T requires
additional constraints for the strategy of “Not Training” and “Not
Broadcasting”:

T7: For IC of T with “Not Training”, there is a sufficient but
not necessary condition that the deposit of T should not be lower
than the value of the model (i.e., an effective deposit discussed
in Section III-B). Otherwise, T will not have the motivation to
train the model.

bT >
(
VRecM − V T

Now

)
· C© (13)

T8: For IC of T with “Not Broadcasting”, let UT
N − UT

NBr >
0, the condition can be formulated:

RCited >
1

QT
Selected · β

(
(−s) · bT + kEncrypt · |M |

+QBroadcast · kTransmit · kExpand · |M |
)
· (1− β) (14)

Detailed derivation of IR and IC can refer to Appendix B,
available online.

IV. NUMERICAL SIMULATIONS

To evaluate the effectiveness of the proposed DeRelayL sys-
tem, we conduct a numerical simulation regarding bidding and
matching of model owner and trainer, depositing, model training,
performance ranking, block mining, as well as the corresponding
incentive issuing. The numerical simulation mainly investigates
two aspects, including sustainability and accessibility. Open-
source simulation codes are available at https://github.com/
Tengfei-Ma13206/DeRelayL_Simulation.

https://github.com/Tengfei-Ma13206/DeRelayL_Simulation
https://github.com/Tengfei-Ma13206/DeRelayL_Simulation


8922 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 9, SEPTEMBER 2025

TABLE III
SIMULATION PARAMETERS SETTING

A. Experimental Settings and Procedure

In this subsection, we will discuss the experimental settings
and procedure. To better explain the numerical simulation, we
provide Table III to list the parameter settings. The detailed
procedure of the numerical simulation is as follows:

(1) Role Allocation: The first step is to randomly allocate
the roles of all participants, e.g., randomly selecting Ts. In this
simulation, we assume that the total number of participants in the
DeRelayL system is fixed atQTotalParticipants = 256. Among them,
the number of miners in each round is fixed atQMiners = 128. The
remaining participants are potential MOs and Ts, with the num-
ber being QMO&T = QTotalParticipants −QMiners = 128. Specifi-
cally, the MOs were determined based on the previous round,
since the MOs in this round were the Ts who luckily ranked at
the top positions during the model performance evaluation in
the last round. Moreover, for the cold start, we set that only the
initiator of the genesis block serves as MO in the first round.
Since each MO has limited capacity, we assume that they can
only collaborate with up to QSelectionLimit = 4 Trainers in each
round.

(2) Model Owner and Trainer Bidding: After determining the
candidate numbers for each role, MOs and Ts start the bidding as
discussed in Section III-C1. The MO’s bidding strategy is based
on a fixed budget, where we directly set BudgetMO = 0.001,
representing the number of coins the MO possesses, denoted as
QCoinsOwnedByMO. Therefore, the MO deposits for each Trainer
can be calculated by min(BudgetMO,QCoinsOwnedByMO)

QSelectionLimit
. Then, the bid-

ding strategy for each T is based on the difference in model
versions. We present the latest model version as VLatest and T’s
current version as V T

Now, and we assume the number of coins
a T owns is QCoinsOwnedByT. Therefore, the bidding deposit is
given by min(QCoinsOwnedByT, VLatest − V T

Now + 1), which means
that the older the model version T has, the higher the motivation
to place a larger bid. This setting accords the effective deposit
(T7 discussed in Section III-C2) to prevent Ts from receiving
the latest model without training or broadcasting the model.

(3) Model Owner and Trainer Matching: After bidding, MO
and T can be matched based on the deposit. We assume the
matching process follows a simple greedy algorithm discussed
in Section III-C1. In this case, MO will sort Ts in descending
order based on the model performance from the previous round,
and T will sort MOs based on the number of deposit coins. The

first MO selects the top QSelectionLimit Ts, the second MO selects
the next QSelectionLimit Ts, and so on, until all MOs or Ts have
found a match participant.

(4) Success of Model Training: After MO and T matching, a
miner is randomly selected from the previously grouped miners
to complete the PoW mining and is designated as DBM (Note
that the “random selection” of the miner is to simulate the
winner of PoW mining, rather than random selection in practical
implementation). The DBM includes the deposit records into
the DeRelayL blockchain. Afterward, Ts involved in the deposit
start to train the model. To simulate the potential accidents that
might happen in practice, we assume that Ts have a probability
of PrTraining = 0.9 to successfully train a new model, while the
remaining Ts may fail to train the model due to various reasons.

(5) Performance Ranking: An EBM is randomly selected from
the miners to include FHE keys to the DeRelayL blockchain.
Following this, a randomly selected TBM includes a fixed
number (QCases = 100) of testing data cases into the DeRelayL
blockchain. Similarly, a randomly selected SBM includes the
testing results to the DeRelayL blockchain. Finally, from those
who successfully trained new models, we assume that a fixed
proportion of Ts (s = 0.5), with flooring applied, are selected to
be regarded as successful trainers (i.e., rank in the top positions).
Also note that the “random selection” of the miners is to simulate
the winner of PoW mining, rather than random selection in
practical implementation.

(6) Incentive Issuing: Based on step (5), the DeRelayL system
will issue rewards to the MO and all predecessor MOs up to the
genesis block owner (additional citation reward as discussed in
Step (11) of Section III-B), each receiving one C©, where every
successful model selection triggers this reward. Moreover, the
corresponding incentives (such as mining reward, testing data
reward, FHE key generation reward, etc.) will also be settled in
this step. Note that, in this simulation, the base reward for miners
is set at 0.001 coins, and we simply assume that no one adopts
strategies other than “Normal” due to the IR and IC ensured
in Section III-C2, because the mistakes would lead to forking
by honest participants, which will be more effective to exclude
them from the simulation in this study. In future research, the
consequences of forking in DeRelayL is a promising topic that
can be further investigated to discuss its unique attributes and
effects.

B. Sustainability

The core motivation of the proposed DeRelayL is to build
a sustainable decentralized learning system, which means that
the design of a sustainable training system must first ensure
that it remains operational, i.e., participants have incentives to
continue their involvement. In detail, a participant’s willingness
to be involved largely depends on their estimated future rewards.
Under stable conditions, with no abrupt changes in rules or
participant behavior, their future rewards can be estimated using
historical data. Therefore, we measure past rewards in terms of
coins accumulated, as the cost of each training round is roughly
constant. Then, we plot the changes in coin quantity for each
participant as rounds progressed in Fig. 3. The observed trend
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Fig. 3. Coins per participants over rounds.

indicates that the growth rate of coins accelerates over time,
demonstrating the sustainability of the proposed DeRelayL,
where all participants have positive estimated future rewards
to continue their involvement. To further explain this result, we
provide a simple proof:

As discussed in Section IV-A, we assume that model ver-
sions are iteratively updated by selecting from all partici-
pants in a round-robin fashion, and every participant suc-
cessfully uploads their trained model periodically. Simply
assume that there are QParticipants participants, denoted as
P1, P2, . . . , Pip , . . . , PQParticipants . Moreover, we consider a sin-
gle DeRelayL blockchain where models are represented by
M1,M2, . . . ,Mim , . . . ,MQModel , where each successive model
is trained based on the previous one.

We focus only on the additional citation reward as discussed in
Step (11) of Section III-B, which has the greatest impact on coin
accumulation. Due to the IR and IC ensured in Section III-C2, we
assume all participants train diligently. Thus, we map each par-
ticipant Pip to models Mip ,Mip+QParticipants ,Mip+2·QParticipants , . . .,
and the mapping relationship satisfies im mod QParticipants = ip.

When participant Pip trains and uploads a model for the x-th
time, the number of coins QCoins they receive is:

QCoins=QParticipants+2 ·QParticipants+· · ·+(x−1) ·QParticipants

=
x(x− 1)QParticipants

2
= O(x2) = O((im)2) (15)

where the round number here equals im = ip + (x− 1) ·
QParticipants. Therefore, if every participant actively engages in
training, their QCoins grows quadratically with the number of
rounds, implying that the coin accumulation rate accelerates over
time. Detailed annotations can refer to Table IV.

C. Accessibility

Besides the sustainability of DeRelayL, it is also crucial to
ensure participants can obtain the trained models, denoted by
accessibility, which fits the motivation that participants can train
and share the model together. To analyze the accessibility, we
plot the model version distribution over rounds, as shown in
Fig. 4. In this figure, we illustrate the percentage of participants
who possess the models of the latest 10 versions (“Latest-v” in
Fig. 4 denotes the model of the v-th version before the current
version), older versions, or none. Note that the performance

TABLE IV
KEY ANNOTATIONS FOR THE NUMERICAL SIMULATION

(IN THE ORDER OF APPEARANCE)

Fig. 4. Model version distribution over rounds.

of models within the same version is approximately consistent
from a global view. Fig. 4 illustrates that all participants can
possess models after rounds of training, and their owned models
are kept updated following the system operation. Moreover,
after convergence, the possession percentage of model versions
tends to be stable, because the trainers possessing older models
will tend to bid higher to compete for the training opportunity,
while those possessing recent models may have less incentive
to compete against them. Therefore, the models will naturally
be distributed as evenly as possible among all participants. To
explore this phenomenon, we also conduct a brief proof:

We denote the number of MOs from the previous round as
QLastMO, and the corresponding number of trainers is:

QLastT = min (QMO&T −QLastMO, QLastMO ·QSelectionLimit)
(16)

In the current round, the number of MOs is:

QMO = s ·QLastT

= s · (min (QMO&T −QLastMO, QLastMO ·QSelectionLimit))
(17)
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And the number of trainers in the current round is:

QT = min (QMO&T −QMO, QMO ·QSelectionLimit) (18)

Since QMO&T is fixed, and QT initially grows but is eventually
bounded by QMO&T . Therefore, after convergence, we can
obtain:

QT = QMO&T −QMO = QMO&T − s ·QLastT (19)

Let the number of trainers in round r be Nr, we can obtain:

Nr+1 = QMO&T − s ·Nr

= QMO&T ·
(
1 + (−s) + (−s)2 + · · ·+ (−s)i−1

)

+ (−s)i ·Nr (20)

Since 0 < s < 1 is the proportion of Ts selected as successful
model trainers, as i tends to infinity, we can obtain:

Nr+i = QMO&T · 1

1 + s
=

QMO&T

1 + s
(21)

where QMO&T

1+s is also fixed, indicating that the number of
trainers remains stable at this value across the training rounds,
thus the phenomenon observed in Fig. 4 can be demonstrated.
Furthermore, the fluctuations in Fig. 4 are due to the probabilis-
tic settings of each trainer to simulate unexpected failures of
training. Detailed annotations can refer to Table IV.

V. DISCUSSION

By further clarifying the details of the proposed DeRe-
layL paradigm, we selected some representative and con-
cerning points to conduct a comprehensive discussion in this
section.

A. System Anonymity

In most public blockchain systems (e.g., Bitcoin [47]),
anonymity is a key feature designed to mitigate the risk of
a 51% attack, which means an entity controlling over 50%
of the network nodes could potentially alter the blockchain,
compromising its tamper-proof nature. However, in DeRelayL,
the necessity for strict anonymity seems to be less critical due
to the distinct target of the DeRelayL blockchain compared
to general public blockchains. Specifically, the primary value
of public blockchains lies in cryptocurrency, and any breach
of consensus (such as a 51% attack) would lead to a collapse
in value. In contrast, the DeRelayL blockchain’s value resides
in the trained models, meaning that a 51% attack would not
yield additional profit. Even if an attacker gains control over the
DeRelayL blockchain, they cannot meaningfully promote the
model improvement, since the actual training is conducted by
independent third-party trainers. In this case, the implications
of a 51% attack differ from those in public blockchains. For
example, if such an attack occurs during Roundn, the model
performance published in Roundn−1 remains unaffected, be-
cause it is an objective measure that is independent of blockchain
consensus. For subsequent rounds, recognizing the 51% attack,
honest participants can fork the blockchain or create a new
blockchain-based on the model from Roundn−1, ensuring the

continuity of the latest models without any loss (detailed discus-
sion on forking is provided in Section V-B).

From another perspective, the DeRelayL system is adaptable
to different blockchain architectures. In this paper, we utilize
a PoW consensus model to enable permissionless participation
in model training and system maintenance. However, DeRe-
layL can also be deployed on a consortium blockchain, where
participants are pre-approved by a governing committee. This
verification process may eliminate the anonymity of partici-
pants, supervising honest behaviors. In this case, some steps
in the DeRelayL workflow can be simplified. For instance, a
consortium blockchain could employ consensus mechanisms
other than PoW to reduce computational costs associated with
block mining. Additionally, approved participants could trans-
mit plaintext model data directly, which will also effectively
reduce the resource overhead discussed in Section VI-A.

In summary, the DeRelayL paradigm does not strictly empha-
size anonymity during system operation and can be adapted to
various scenarios through appropriate modifications.

B. Blockchain Forking

As mentioned in Section V-A, the DeRelayL blockchain is
designed to support flexible forking in the event of attacks or
unexpected issues. Therefore, it is important to consider the
potential impact that the forking of the DeRelayL blockchain
will result in. In general public blockchains (e.g., Bitcoin [47]),
forking leads to the creation of subchains, and miners must
decide which subchain to follow. In theory, miners will tend to
follow the longest valid subchain (or longest valid chain), which
represents the most computational workers (in PoW systems)
or the greatest stake (in Proof of Stake (PoS) systems). This
rule helps protect the blockchain against attacks such as double
spending and ensures that honest participants who follow the
protocol can prevail over malicious users.

In the case of DeRelayL, normal operations will not be af-
fected by forking in terms of model performance improvement.
This is because the common model training process is inherently
iterative, and model performance naturally fluctuates across
training epochs. Generally, the training rounds in DeRelayL can
be viewed similarly, where each forking represents an explo-
ration of different potential paths toward a global optimum, and
each block within a subchain represents a local optimum along
that journey. Additionally, when considering the longest valid
subchain, the risk of double spending seems to have minimal
impact on the normal operation of the DeRelayL system. For
instance, if the DeRelayL system allows forking in Roundn,
malicious users might attempt to double spend by depositing
in one subchain with one model owner and in another subchain
with a different model owner, aiming to exchange the same coins
for multiple models. It seems that malicious users can obtain
many models through the double spending attack. However, the
models they obtain will be from the same version of Roundn,
which will have comparable performance from a global aspect.
Furthermore, the dishonest behavior will be recorded on the
blockchain, and their deposits will not be returned, preventing
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the attackers from joining in subsequent training rounds and
obtaining newer models.

Thus, the forking of DeRelayL exhibits different attributes
compared to general public blockchains. However, to seriously
investigate the consequences, it is necessary to conduct a dedi-
cated study focusing on its unique features and effects.

C. Necessity of the Four-Stage Process

In this paper, we propose a four-stage process of the DeRe-
layL, including Deposit Block (DB), Encryption Block (EB),
Testing Block (TB), and Settlement Block (SB), which is de-
signed to ensure the integrity, consistency, fairness, and security
of the training and evaluation process. We consider that each
stage serves a distinct function that cannot be combined without
compromising the system’s objectives. The detailed schemes
will be discussed as follows:

(1) Combination of DB and EB: In the DB stage, both the train-
ers and model owners are committed to the process, preventing
dishonest behaviors like the trainers stealing the model weights
or the model owners failing to provide the model weights. If the
DB miner and EB miner were the same entity, the model would
be registered after passing through the DB process, but this
could result in inconsistencies between the tested and the trained
models. In this case, the separation of DB and EB ensures that
the model’s hash value is determined independently, preventing
any tampering or unintended changes. On the other hand, the EB
stage is initiated after DB to enable the selection of a new miner if
needed, ensuring that the process remains decentralized and fair.
Thus, if DB and EB were combined, it would be harder to replace
a dishonest participant, leading to potential manipulation.

(2) Combination of EB and TB: EB and TB cannot be com-
bined because the testing data cannot be released during the EB
stage before the model’s hash (Hash(Mk

n)) is fixed. Allowing
this would risk overfitting, as the model would have access to the
test data before the final evaluation, which means that the model
trainers can use the testing data to fine-tune their models so that
they can have better evaluation scores. Moreover, the TB stage
also prevents unfair testing data cases by separating the training
and testing phases, ensuring that the testing data is unbiased,
which is crucial for fair evaluation.

(3) Combination of TB and SB: If TB and SB were combined,
it would be possible for a malicious participant to manipulate
the testing data to artificially boost a specific model’s ranking.
To mitigate this, the PoW mechanism [47] randomly selects
the TB miner, ensuring that no single entity can control the
process in the long term. Moreover, the SB stage serves to
prevent unfair performance testing, ensuring that the model’s
evaluation is independent and accurate. Additionally, waiting
until the model training is completed before the TB and SB
phases helps avoid cheating, such as manipulating testing cases
before evaluation. Therefore, the fact the same TB miner and
SB miner could allow one entity to potentially manipulate both
the test and score phases.

In summary, the four-stage process is essential for maintain-
ing fairness, preventing dishonest behavior, and ensuring the
integrity of the system.

D. Consensus Mechanism

As mentioned in Section III-B, we utilize the Proof of Work
(PoW) [47] consensus model for block generation as an example
by default. In our system, PoW is primarily used to maintain the
randomness of miner selection, which helps prevent collusion
and ensures the integrity of the consensus process. However,
other consensus mechanisms capable of maintaining similar ran-
domness can also be employed, while PoW is preferred due to its
well-understood and established properties. The computational
difficulty of PoW in this context can be adjusted by modifying
the difficulty of solving the cryptographic puzzle [51]. In this
case, the adjustment allows the system to control the time taken
for block generation, ensuring consistency in the block creation
process. It is worth noting that, a key distinction from Bitcoin’s
PoW is that, while Bitcoin’s PoW is primarily used to control
the time interval between blocks, the focus in DeRelayL is more
on maintaining randomness in the selection of participants for
training. This setup reduces the likelihood of malicious actors
benefiting from any potential system collapse, ensuring that no
participant gains at the expense of others.

On the other hand, the primary purpose of PoW in this system
is to randomly select a miner, but ensuring the security of the
system against attacks involves more than just this random selec-
tion, such as the 51% attack [52]. A 51% attack would typically
occur if a malicious entity controls the majority of the network’s
computational power and can alter the consensus [52]. However,
in DeRelayL, as long as the majority of miners are honest, even
if a dishonest group successfully mines a block, their blocks
will be discarded by the network. This is because the system
relies on the assumption that the majority of participants will
act honestly and that any block mined by dishonest individuals
will eventually be rejected by the honest majority. Furthermore,
the integrity of the system depends on the assumption that the
honest majority will always outweigh any dishonest minority.
If a dishonest majority were to emerge, they would likely be
phased out over time as the system evolves, especially given that
participants are incentivized to act honestly in order to receive
rewards or maintain their reputation within the network. The de-
centralized and distributed nature of the blockchain, along with
the transparent consensus mechanism, ensures that any attempt
to subvert the system by dishonest actors is self-limiting, as their
blocks would not be accepted by the majority of honest miners.
In fact, to further strengthen the security issues, additional
mechanisms, such as staking or reputation systems [53], could
be introduced to discourage dishonest behavior and incentivize
honest participation, ensuring that the network remains secure
and trustworthy even in the event of potential attacks.

E. Potential Real-World Applications

Currently, large model training mainly relies on crawling
corpora from the Internet (e.g., models like GPT-3 [54] and
Llama 3.1 [55]), while the data/knowledge contributors can-
not share the profits of large models. This approach leads to
a significant drawback: the model trainers find it extremely
difficult to obtain data that is not available online, while the
data contributors are not willing to contribute knowledge to
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the Internet. A real-world case has occurred that some artists
have refused to share their artworks with model trainers [4],
further highlighting the limitations of relying on Internet-based
data collection. Therefore, DeRelayL’s potential impact lies in
creating a decentralized training paradigm. By allowing the
exchange of model usage rights for data, DeRelayL intends to
boost the richness of training data. In this case, a wider variety
of data from different offline sources can be integrated into the
training process, such as specialized industry datasets, personal
diaries, and private research findings. Since this mechanism does
not require a large amount of capital injection to purchase data, it
reduces the economic cost of further enhancing the performance
of large models. Moreover, the cost-effective approach also
makes it more accessible for a broader range of participants,
including small-scale research teams and individual developers,
to contribute to and benefit from the development of large
models. Therefore, the DeRelayL system can not only increase
individual influence on the development of large models but
also help prevent large companies from monopolizing the values
embedded in large models.

VI. LIMITATIONS AND FUTURE RESEARCH TOPICS

However, it is necessary to point out that the DeRelayL is still
in its early stage, and there are several limitations that remain to
be completely addressed in the future.

A. Resource Overhead

In this paper, we employ fully homomorphic encryption
(FHE) [45] to transmit model weights, where FHE is an encryp-
tion scheme that enables analytical functions to be run directly
on encrypted data while yielding the same encrypted results as
if the functions were run on plaintext data [46]. The purpose of
utilizing FHE is to evaluate the performance of trained models
without exposing the model weights. However, our theoretical
framework assumes an ideal scenario where the computational,
memory, and storage overhead of FHE is acceptable. In prac-
tice, high computation and memory overhead make FHE com-
putation over 10, 000× slower than unencrypted computation
on conventional computing systems that process unencrypted
data [46]. This substantial overhead also increases the cost
of transmitting encrypted models, as it requires significantly
more memory, storage, and internet traffic. Additionally, FHE
computations may introduce small errors that accumulate over
FHE operations performed, leading to approximate rather than
precise results [45]. Consequently, FHE is less suitable for ap-
plications requiring high numerical precision, such as scientific
computations, due to its reliance on polynomial approximations.

Therefore, to implement the DeRelayL system effectively,
several challenges must be addressed: (1) The computational,
memory, and storage overhead of FHE needs to be reduced,
potentially through the development of more effective FHE algo-
rithms. While specialized hardware can significantly accelerate
FHE operations, it may not be accessible to common users, lim-
iting their ability to participate in the DeRelayL system. (2) Due
to the storage demands of FHE, broadcasting encrypted models
poses a challenge for common users. A potential solution is that

trainers can upload encrypted models to decentralized storage,
and then broadcast only the storage addresses to other partici-
pants, avoiding the significant transmission costs associated with
P2P communication. (3) The trade-off between FHE resource
overhead and the precision required for performance evaluation
should be further explored, since it is intuitive that reducing
numerical precision could simplify FHE operations, thereby de-
creasing resource consumption. (4) Alternative methodologies
for evaluating the training process should also be investigated.
The motivation for using FHE is to prevent model weight leakage
during performance evaluation. Thus, we consider that the ap-
propriate utilization of technologies like zero-knowledge proof
(ZKP) may also provide solutions to the proposed scenario of
DeRelayL. ZKP is a cryptographic method that allows one party
(i.e., the trainer) to prove to another party (i.e., the SBM) that
they know a piece of information (i.e., the performance of a
trained model) without revealing the actual information itself
(e.g., the exact model weight) [56], [57]. Additionally, other
cryptographic techniques that achieve similar objectives can also
be considered to improve the DeRelayL system.

B. Model Size Dilemma

In this paper, we assume that the model size (or specific model
architecture) is fixed at the creation of the genesis block. This
assumption is reasonable, since a fixed model can standardize the
programming interface for each participant, lowering the barrier
to joining the DeRelayL system. However, according to scaling
laws [2], [3], model size influences the upper-performance limit.
Therefore, over many rounds of training, a fixed model size will
eventually reach its performance ceiling, where further training
yields diminishing returns. In this case, the DeRelayL system
meets the model size dilemma, where model improvements
are minimal no matter how to conduct the continued training,
making the resource costs associated with training unworthy.
Consequently, our mathematical modeling of DeRelayL does
not consider a stop condition when the cost of model training
exceeds the incremental value gained from the model improve-
ment.

Additionally, it is necessary to establish mechanisms for
dynamically enlarging the model size without initiating a new
DeRelayL blockchain. Several critical challenges need to be
addressed: determining who will be responsible for manag-
ing model size enlargement, identifying the appropriate tim-
ing/block/round for implementing the larger model, and defin-
ing the optimal size for the new model. Furthermore, the per-
formance change associated with model enlargement must be
carefully evaluated, and suitable technologies must be identified
for transferring knowledge from the previous model to the
new one. Correspondingly, the responsibility for executing this
knowledge transfer and evaluating its performance must also
be clearly defined. Therefore, the dynamic adjustment of model
size remains an open research topic in the DeRelayL.

In practice, the model size dilemma is an extreme case
that would only append after a significant number of train-
ing rounds, which would require a considerable amount of
time to achieve. Theoretically, over such a long period, other
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DeRelayL blockchains with higher expected performance would
emerge, attracting rational participants to migrate to these new
blockchains. However, this transition would lead to another
dilemma: a senior participant in the old DeRelayL blockchain
would become a freshman in the new one, which makes the
accumulated contribution of the senior participant in the old
blockchain useless. Therefore, the model size dilemma of the
DeRelayL paradigm and its associated challenges are worthy of
further research and investigation.

C. Training Time and Training Data Dilemma

In the DeRelayL system, the training time for each round
is dynamically adjusted to optimize training efficiency and
performance. The duration is automatically set based on the
minimum time required to achieve a positive increment in model
performance. If the training time is too long, it may indicate that
the training process is inefficient, leading to unnecessary re-
source consumption. On the contrary, if the duration is too short,
there is a risk that the model’s performance may not improve,
resulting in the efforts of the trainers ineffective. To this end, the
system should prioritize the final outcome, the real growth in
performance, rather than focusing too heavily on the specifics
of the training process itself. We consider that the “valuable”
data can be evaluated by whether it could quickly improve the
model’s performance. For example, for large datasets, the system
encourages trainers to break their datasets into smaller, more
manageable parts, each of which can contribute to rapid perfor-
mance gains. This approach may ensure that trainers with larger
datasets can participate multiple times and continue to benefit
from the model’s improvements. Therefore, how to adjust the
training duration according to performance increments and data
value is an important challenge, which influences the fairness
and efficiency of collaborative training in the DeRelayL system.

Besides the training itself, we also notice that the true value
of utilized data may not be immediately reflected in the model’s
performance in the current round, which may discourage partic-
ipants who possess high-quality data from contributing. There-
fore, how to effectively reflect the contribution of the participants
can be further studied in the future, e.g., by applying data
valuation-related approaches [58].

VII. CONCLUSION

In this paper, we propose a novel collaborative learning
paradigm, named Decentralized Relay Learning (DeRelayL), a
sustainable decentralized learning system where permissionless
participants can contribute to model training in a relay-like man-
ner and share the model together. We introduce the architecture
and workflow of DeRelayL and incentive mechanisms to en-
sure sustainability. Moreover, theoretical analysis and numerical
simulations are conducted to demonstrate the effectiveness of
the proposed DeRelayL. At last, we provide comprehensive
discussions of DeRelayL regarding promising research topics
in the future. In summary, the proposed DeRelayL training
mechanism aims to solve the challenge of motivating widespread
participation in large-scale model training, especially by encour-
aging individuals to contribute data that is not readily available

on the Internet. If this mechanism operates effectively, it could
lead to a more equitable distribution of the benefits derived from
AI, where participants actively influence and benefit from the
intelligent Big Data era they help create. We expect that our
insights can inspire related studies into decentralized collabora-
tive learning systems that empower common users, fostering a
fairer, more sustainable digital ecosystem, where data creators
have greater control and can benefit from the AI models they
help develop.
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APPENDIX

A. Utility Formulation

This section presents the detailed derivation regarding the
utilities of different participants’ strategies, and the final for-
mulations are listed in Table II. Since the formulation involves
lots of parameters, we summarize the key annotations listed
in Table I for better understanding. The utility formulation is
following with Section III-C2, and the extended derivation is
shown as follows:

(1) Model owner (MO): The utility of MO can be denoted
as:

UMO = RMO � CMO

= RMO

Now +RMO

Future � CMO

Deposit � CMO

Transmit
(22)

where RMO

Now and RMO

Future refer to the 4) additional citation
reward as discussed in Step (11) of Section III-B. RMO

Now is
the citation reward of the current round, and RMO

Future is the
revenue of the future rounds, which will be calculated as a
geometric series since the future revenue has a discount rate.
For the cost, MO has deposit cost CMO

Deposit for each round, but
the cost is likely to be returned if the selected trainers behave
normally. Moreover, MO also has transmission cost CMO

Transmit
when sending the model to the selected trainers.

The strategy set of MO is {Normal (N), Not Transmitting
(NTm)}, where “Not Transmitting (NTm)” is an abstract
presentation of dishonest behavior, including transmitting fake
weights, etc. The utilities of different strategies are formulated
as follows:

(1.1) MO with N:
The revenue of MO with N is given by:

RMO = RMO

Now +RMO

Future

= QMO

Selected · RCited +
QMO

Selected · � · RCited

1� �

=
QMO

Selected · RCited

1� �

(23)

where QMO

Selected is the number of selected models of MO, and
RCited is the revenue for citation reward. Kindly remind that we
designed a mechanism to reward the citation of good models,
discussed in 4) additional citation reward of Step (11) in
Section III-B, and it should have a discount rate 0  �  1
when calculating the future revenue. In summary, the final
formula of RMO is presented as the sum of geometric series,
i.e., the total expected revenue for citation reward in now and
future.

The cost of MO with N is given by:

CMO = CMO

Deposit + CMO

Transmit

= QSelected · (1� s) · bMO + kTransmit · |M |
(24)

where QSelected is number of selected trainers and bMO is
MO’s deposit cost for one trainer, determined by Algorithm
1 in Section III-C1. And 0  s  1 is the proportion of
selected qualified models. Kindly remind that, to alleviate the
lazy workers, we design a mechanism that only the trained
models which have performance ranking in top-K can return
the deposit cost for both original model owners in 3) returning

qualified deposit of Step (11) in Section III-B. Here, we
use 0  s  1 to denote the proportion that can pass the
performance comparison for better generalization. Therefore,
QSelected · (1 � s) · bMO is the expected deposit cost of MO.
Moreover, kTransmit is the transmission cost coefficient, and |M |
is the number of parameters in the model, so kTransmit · |M | can
denote the transmission cost.

Therefore, the utility of MO with N can be formulated as:

UMO

N
= RMO � CMO

=
QMO

Selected · RCited

1� �
�QSelected · (1� s) · bMO

� kTransmit · |M |

(25)

(1.2) MO with NTm:
The revenue of MO with NTm is given by:

RMO = 0 (26)

which means T cannot obtain original models to train, so MO
also cannot obtain any citation reward.

The cost of MO with NTm is given by:

CMO = CMO

DepositLoss = QSelected · bMO (27)

which means that the deposit of MO is bMO will lose, if the
MO behave dishonestly. Moreover, since the MO have selected
QSelected Ts, the deposit loss will be QSelected · bMO.

Therefore, the utility of MO with NTm can be formulated
as:

UMO

NTm
= �QSelected · bMO (28)

(2) Trainer (T): The utility of T can be represented as:

UT = RT � CT = RT

Now +RT

Future

� CTrain � CT

Deposit � CT

RecM � CEncrypt � CBroadcast
(29)

where RT

Now is the revenue of the current round, which contains
the revenue of the received model from MO RT

RecM and the
revenue of the model trained by T RT

TrainedM. And RT

Future is
the future revenue for additional citation reward, similar to
MO. The cost of T consists of five parts: 1) model training
cost CTrain; 2) deposit cost CT

Deposit, which will be returned if
behaving normally; 3) cost of receiving the model from MO
CT

RecM; 4) FHE encryption cost of trained model CEncrypt; 5)
cost of broadcasting encrypted model CBroadcast.

The T may choose to not train the model (NTr) or not
broadcast the trained model (NBr), so the strategy set of T is
{Normal (N), Not Training (NTr), Not Broadcasting (NBr)}.
The utilities of different strategies are formulated as follows:

(2.1) T with N:
The revenue of T with N is given by:

RT = RT

Now +RT

Future

= (RRecM +RTrainedM) +RT

Cited

= [(VRecM � V T

Now) · C + 1 · C ] +
QT

Selected · � · RCited

1� �

=
�
VRecM � V T

Now + 1
�
· C +

QT

Selected · � · RCited

1� �
(30)
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where VRecM � V T

Now denotes the version gap between the
received model (the latest model) and the model that T has
already owned (the out-of-date model), and we introduce C
to denote the value of knowledge gap between two adjacent
model versions. The second term is the additional citation
reward, similar to the MO, which is presented as the sum
of geometric series based on the discount rate 0  �  1.

The cost of T with N is given by:

CT = CTrain + CT

Deposit + CT

RecM + CEncrypt + CBroadcast

= PComp ·D · ⌧ · |M |+ (1� s) · bT

+ kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |

(31)

where PComp is the price of computational resource, D rep-
resents the training data size, ⌧ is the training duration, and
|M | denotes the number of parameters in the model, so the
first term is the training cost. Then, 0  s  1 denotes the
proportion that can pass the performance comparison, thus
(1� s) · bT is the expected deposit cost. Moreover, kTransmit is
the transmission cost coefficient, kEncrypt is the FHE encryption
cost coefficient, so the transmission cost and encryption cost
can be presented. At last, QBroadcast is the number of transmis-
sions in broadcasting, kExpand is the expanding coefficient of
model parameter number after FHE, and the aforementioned
parameters can calculate the broadcasting cost.

Therefore, the utility of T with N can be formulated as:

UT

N
= RT � CT

=
�
VRecM � V T

Now + 1
�
· C +

QT

Selected · � · RCited

1� �

�
⇥
PComp ·D · ⌧ · |M |+ (1� s) · bT + kTransmit · |M |

+kEncrypt · |M |+QBroadcast · kTransmit · kExpand · |M |]
(32)

(2.2) T with NTr:
The revenue of T with NTr is given by:

RT = RRecM

= (VRecM � V T

Now) · C
(33)

where (VRecM � V T

Now) · C is the value of the version gap
between the received model (the latest model) and the model
that T has already owned (the out-of-date model).

The cost of T with NTr is given by:

CT = CT

DepositLost + CT

RecM

= bT + kTransmit · |M |
(34)

where bT is the deposit of T, which will be lost since the T
has failed to train. Moreover, the T has the transmission cost
kTransmit · |M | for receiving the model from MO.

Therefore, the utility of T with NTr can be formulated as:

UT

NTr
= RT � CT

= (VRecM � V T

Now) · C � bT � kTransmit · |M |
(35)

(2.3) T with NBr:

The revenue of T with NBr is given by:

RT = RRecM +RTrainedM

= (VRecM � V T

Now) · C + 1 · C
=
�
VRecM � V T

Now + 1
�
· C

(36)

where the Ts have finished the model training, so they will
have one more C compared with “Not Training”.

The cost of T with NBr is given by:

CT = CTrain + CT

DepositLost + CT

RecM

= PComp ·D · ⌧ · |M |+ bT + kTransmit · |M |
(37)

which has the training cost and transmission cost for receiving
the model from MO, and the deposit of T bT will also be lost.

Therefore, the utility of T with NBr can be formulated as:

UT

NBr
= RT � CT

=
�
VRecM � V T

Now + 1
�
· C

�
⇥
PComp ·D · ⌧ · |M |+ bT + kTransmit · |M |

⇤
(38)

(3) Deposit block miner (DBM): The utility of DBM is:

UDBM = RDBM � CDBM

= RDBM

Include � CMine
(39)

where RDBM

Include is the incentive of miners to include deposit
smart contracts as much as possible, so the revenue is
proportional to the quantity of included data. CMine is the
cost of mining the block, i.e., the computational cost of the
PoW consensus model. Note that, all miners (DBM, EBM,
TBM, SBM) have the aforementioned RInclude and CMine. We
also simply assume the block generation intervals are almost
identical for all stages, thus the CMine is almost fixed.

The DBM may choose to pack partial deposit smart con-
tracts (NPA) or pack improper ones (PI), thus the strategy set
of DBM is {Normal (N), Not Packing All (NPA), Packing
Improper Deposit Contracts (PI)}. The utilities of different
strategies are formulated as follows:

(3.1) DBM with N:
The revenue of DBM with N is given by:

RDBM = RDBM

Include

= QDeposit · RDeposit
(40)

where QDeposit is the number of deposit smart contracts, and
RDeposit is the revenue to incentivize the DBM to pack deposit
smart contracts as much as possible. Under this setting, a
problem has emerged: what if a dishonest DBM packs invalid
smart contracts to cheat for additional revenue? Due to the
decentralized consensus of blockchain, other miners will check
the validity of packed content, so the dishonest DBM will be
recognized as “Packing Improper Deposit Contracts”. In this
case, other miners will build a new fork to invalidate the block
from a dishonest DBM, thus the corresponding dishonest DBM
will lose all revenues.

The cost of DBM with N is given by:

CDBM = CMine (41)

where CMine is the mining cost. Remind that all miners (DBM,
EBM, TBM, SBM) have the CMine, and we simply assume the
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block generation intervals are almost identical for all stages,
thus the CMine is almost fixed to all miners.

Therefore, the utility of DBM with N can be formulated as:

UDBM

N
= RDBM � CDBM

= QDeposit · RDeposit � CMine
(42)

(3.2) DBM with NPA:
The revenue of DBM with NPA is given by:

RDBM = RDBM

Include

= QDepositLess · RDeposit
(43)

where 0 < QDepositLess < QDeposit, which means the DBM has
not packed all deposit smart contracts that broadcast in the
DeRelayL network, and QDepositLess · RDeposit is the including
revenue.

The cost of DBM with NPA is given by:

CDBM = CMine (44)

where CMine is the mining cost.
Therefore, the utility of DBM with NPA can be formulated

as:
UDBM

NPA
= RDBM � CDBM

= QDepositLess · RDeposit � CMine
(45)

(3.3) DBM with PI:
The revenue of DBM with PI is given by:

RDBM = 0 (46)

where the dishonest DBM will not obtain revenue since the
cheating behavior will be recognized by other miners in the
DeRelayL system.

The cost of DBM with PI is given by:

CDBM = CMine (47)

where CMine is the mining cost.
Therefore, the utility of DBM with PI is given by:

UDBM

PI = �CMine (48)

(4) Encryption block miner (EBM): The utility of EBM
is:
UEBM = REBM � CEBM

= REBM

Include +RFHEM � CMine � CEBM

RecFHEM � CGenFHEKey
(49)

where REBM

Include is the incentive of including trained models’
information, containing metadata and hash values. Since the
EBM is responsible for generating the FHE key pair, the
EBM can use the private key to decrypt encrypted models,
as discussed in Step (7) of Section III-B. Thus, RFHEM is
the revenue for decrypting encrypted models of FHE, and
CEBM

RecFHEM is the cost for receiving the encrypted model (EB
can just receive the model with best performance). CMine is
the mining cost, and CGenFHEKey is the cost of generating FHE
key pair.

The EBM may not generate an FHE key (NG) or send
a random number to disturb the training system. Thus, the
strategy set of EBM is {Normal (N), Not Generating FHE

Key (NG)}. The utilities of different strategies are formulated
as follows:

(4.1) EBM with N:
The revenue of EBM with N is given by:

REBM = REBM

Include +RFHEM

= QHashM · RHashM + (VFHEM � V EBM

Now ) · C
(50)

where QHashM is the number of packed hash values of trained
models, and RHashM is the corresponding revenue. The second
term is a special revenue for the EBM, as discussed in Step
(7) of Section III-B, where (VFHEM �V EBM

Now ) · C is the value
of the version gap between the encrypted model (there are
lots of encrypted models are broadcast to the network, but the
EBM will tend to decrypt the model that ranks at top-1 during
the performance evaluation) and the model that the EBM has
already owned (out-of-date model).

The cost of EBM with N is given by:

CEBM = CMine + CEBM

RecFHEM + CGenFHEKey

= CMine + kTransmit · kExpand · |M |+ CGenFHEKey
(51)

where CMine is the mining cost. If the EBMs want to obtain
the latest model, they will afford the transmission cost for
receiving the encrypted model, denoting as kTransmit · kExpand ·
|M |, where kTransmit is the transmission cost coefficient, kExpand
is the expanding coefficient of model parameter number after
FHE, and |M | denotes the number of parameters in the model.

Therefore, the utility of EBM with N can be formulated as:

UEBM

N
= REBM � CEBM

=
�
QHashM · RHashM + (VFHEM � V EBM

Now ) · C
�

� (CMine + kTransmit · kExpand · |M |+ CGenFHEKey)
(52)

(4.2) EBM with NG:
The revenue of EBM with NG is given by:

REBM = 0 (53)

where the revenue of dishonest EBM will be equal to zero.
This is because the invalid FHE key pair (e.g., randomly
generated numbers) will be recognized by other participants,
and rational participants will build a new fork to invalidate the
block from a dishonest EBM.

The cost of EBM with NG is given by:

CEBM = CMine (54)

where CMine is the mining cost.
Therefore, the utility of EBM with NG can be formulated

as:

UEBM

NG
= �CMine (55)

(5) Testing block miner (TBM): The utility of TBM is:

UTBM = RTBM � CTBM

= RTBM

Include +RGenTDCases � CMine � CGenTDCases
(56)

where RTBM

Include is the incentive of including information of
encrypted models using FHE, containing metadata and hash
values. The TBMs are responsible for generating testing
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data, so they will be rewarded RGenTDCases according to the
number of testing cases. Thus, there are corresponding costs
of generating testing cases CGenTDCases. Similar to other miners,
CMine is the mining cost.

For TBMs, they may upload improper testing cases (IT),
thus the strategy set of TBM is {Normal (N), Improper Testing
Cases (IT)}. The utilities of different strategies are formulated
as follows:

(5.1) TBM with N:
The revenue of TBM with N is given by:

RTBM = RTBM

Include +RGenTDCases

= QEncryptedM · REncryptedM +QCases · RCase
(57)

where QEncryptedM is the number of packed hash values of
encrypted trained models after FHE, and REncryptedM is the
corresponding incentive for including the hash values. More-
over, QCases is the number of included testing data cases, and
RCase is the corresponding incentive for generating the testing
data cases.

The cost of TBM with N is given by:

CTBM = CMine + CGenTDCases

= CMine +QCases · CUnit
GenTDCase

(58)

where CMine is the mining cost. Moreover, the generation,
preparation, or collection of testing data also has cost, and
we use CUnit

GenTDCase to denote the generation cost of the testing
data per unit/case, thus QCases · CUnit

GenTDCase is the total cost
for generating the testing data cases.

Therefore, the utility of TBM with N can be formulated as:

UTBM

N
= RTBM � CTBM

= QEncryptedM · REncryptedM +QCases · RCase

� CMine �QCases · CUnit
GenTDCase

(59)

(5.2) TBM with IT:
The revenue of TBM with IT is given by:

RTBM = 0 (60)

where the revenue of dishonest TBM will be equal to zero.
This is because a dishonest TBM will be recognized by most
participants since the testing data is accessible to the public
that every participant can check, thus the rational participants
will build a new fork to invalidate the block from a dishonest
TBM.

The cost of TBM with IT is given by:

CTBM = CMine (61)

where the dishonest TBMs only have the mining cost CMine,
since they will not truly prepare the testing data or just utilize
old testing data uploaded by other TBMs in the previous
training rounds.

Therefore, the utility of TBM with IT can be formulated as:

UTBM

IT
= �CMine (62)

(6) Settlement block miner (SBM): The utility of SBM
is:
USBM = RSBM � CSBM

= RSBM

Include +RVerify � CMine � CSBM

RecFHEMs � CVerify
(63)

where RSBM

Include is the incentive of including verification con-
firmation details, containing metadata and performance index.
The SBMs are responsible for verifying the performance of
trained models, so they will be rewarded RVerify according to
the number of verified models, corresponding to the cost for
receiving all encrypted models CSBM

RecFHEMs and verifying them
CVerify. CMine is the mining cost.

The SBM may not rank the trained models properly (IRa),
so the strategy set of SBM is {Normal (N), Improper Rank
(IRa)}. The utilities of different strategies are formulated as
follows:

(6.1) SBM with N:
The revenue of SBM with N is given by:

RSBM = RSBM
Include +RVerify

= QVerifiedM · RVerifiedM +QVerifiedM ·QCases · RVerify
(64)

where QVerifiedM is the number of verified models, and
RVerifiedM is the corresponding incentive for including the
records. Moreover, the system will incentivize the SBM to
verify trained models based on the testing data provided by
the previous TBM. Thus, there is a revenue for verification,
where QCases is the number of testing data cases, and RVerify
is the corresponding revenue for each case of verification per
model.

The cost of SBM with N is given by:

CSBM = CMine + CSBM

RecFHEMs + CVerify

= CMine +QVerifiedM · kTransmit · kExpand · |M |
+QVerifiedM ·QCases · CUnit

Verify

(65)

where CMine is the mining cost. To verify the trained model,
there is a receiving cost of encrypted models for the SBM,
where kTransmit is the transmission cost coefficient, kExpand is
the expanding coefficient of model parameter number after
FHE, and |M | denotes the number of parameters in the model.
Moreover, the verification process has a computational cost,
where CUnit

Verify denotes the verification cost per testing data
case/unit.

Therefore, the utility of SBM with N can be formulated as:

USBM

N
= RSBM � CSBM

= QVerifiedM · RVerifiedM +QVerifiedM ·QCases · RVerify

� CMine �QVerifiedM · kTransmit · kExpand · |M |
�QVerifiedM ·QCases · CUnit

Verify
(66)

(6.2) SBM with IRa:
The revenue of SBM with IRa is given by:

RSBM = 0 (67)

where the revenue of dishonest SBM will be equal to zero.
This is because a dishonest SBM will be recognized by most
participants, since everyone can check the correctness of the
ranking results. Therefore, rational participants will build a
new fork to invalidate the block from a dishonest SBM.

The cost of SBM with IRa is given by:

CSBM = CMine (68)
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where the dishonest TBMs only have the mining cost CMine,
since they will not truly receive or verify the trained models. If
the TBM has honestly finished the verification process, there
is no reason that a rational TBM improperly ranks the models
due to the huge cost of the verification process.

Therefore, the utility of SBM with IRa can be calculated
as:

USBM

IRa
= RSBM � CSBM

= 0� CMine

= �CMine

(69)

Overall, all utilities of different participants’ strategies were
formulated. Specifically, the final formulations of each strategy
are summarized in Table II of Section III-C2.

B. Theoretical Analysis

1) Individual Rationality (IR): To achieve IR in the DeRe-
layL system, all participants that choose the “Normal” strategy
should at least have positive utilities, which means that the
incentive provided by the proposed mechanism should lead to
UParticipant

N
� 0. Therefore, for each participant, there will

be some conditions to guarantee that UParticipant

N
� 0, which

can be presented as follows:
(1) IR for MO:
Let UMO

N
� 0, the IR condition for MO can be formulated

as:

QMO

Selected · RCited

1� �
�QSelected · (1� s) · bMO � kTransmit · |M | � 0

(70)

Rearranging the inequality, the condition can be formulated
as:

QMO

Selected · RCited

1� �
� QSelected · (1� s) · bMO + kTransmit · |M |

(71)

Multiplying both sides by (1��) to eliminate the denominator:

QMO

Selected · RCited �
(1� �)·

�
QSelected · (1� s) · bMO + kTransmit · |M |

�

(72)

Thus, to hold IR for MO, RCited should satisfy:

RCited �
(1� �) ·

�
QSelected · (1� s) · bMO + kTransmit · |M |

�

QMO

Selected
(73)

(2) IR for T:
Let UT

N
� 0, the IR condition for T can be formulated as:

�
VRecM � V T

Now + 1
�
· C +

QT

Selected · � · RCited

1� �

� PComp ·D · ⌧ · |M |+ (1� s) · bT

+ kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |

(74)

Rearranging terms, the condition can be formulated as:

QT

Selected · � · RCited

1� �
� PComp ·D · ⌧ · |M |+ (1� s) · bT

+ kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |
�
�
VRecM � V T

Now + 1
�
· C

(75)

Multiplying by (1� �), the condition can be formulated as:

QT

Selected · � · RCited

� (1� �) ·
�
PComp ·D · ⌧ · |M |+ (1� s) · bT

+ kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |
�
�
VRecM � V T

Now + 1
�
· C )

(76)

Thus, to hold IR for T, RCited should satisfy:

RCited � (1� �)

QT

Selected · �
·
⇣
PComp ·D · ⌧ · |M |

+ (1� s) · bT + kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |

�
�
VRecM � V T

Now + 1
�
· C

⌘
(77)

(3) IR for DBM:
Let UDBM

N
� 0, the IR condition for DBM can be

formulated as:

UDBM

N
= QDeposit · RDeposit � CMine � 0 (78)

Therefore, to hold IR for DBM, RDeposit should satisfy:

RDeposit �
CMine

QDeposit
(79)

(4) IR for EBM:
Let UEBM

N
� 0, the IR condition for EBM can be

formulated as:
QHashM · RHashM + (VFHEM � V EBM

Now ) · C � CMine

+kTransmit · kExpand · |M |+ CGenFHEKey
(80)

Rearranging the terms, the condition can be formulated as:

QHashM · RHashM � CMine + kTransmit · kExpand · |M |
+ CGenFHEKey � (VFHEM � V EBM

Now ) · C
(81)

Therefore, to hold IR for DBM, RHashM should satisfy:

RHashM � 1

QHashM
·
⇣
CMine + kTransmit · kExpand · |M |

+ CGenFHEKey � (VFHEM � V EBM

Now ) · C
⌘

(82)

(5) IR for TBM:
Let UTBM

N
� 0, the IR condition for TBM can be formu-

lated as:
QEncryptedM · REncryptedM +QCases · RCase

> CMine +QCases · CUnit
GenTDCase

(83)
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where there are two parameters that should be determined to
hold IR for TBM, including REncryptedM and RCase.

(6) IR for SBM:
Let USBM

N
� 0, the IR condition for SBM can be formu-

lated as:

QVerifiedM · RVerifiedM +QVerifiedM ·QCases · RVerify

� CMine +QVerifiedM · kTransmit · kExpand · |M |
+QVerifiedM ·QCases · CUnit

Verify (84)

where there are two parameters that should be determined to
hold IR for SBM, including RVerifiedM and RVerify.

2) Incentive Compatibility (IC): To achieve IC in the
DeRelayL system, all rational participants will tend to choose
the “Normal” strategy, which means that the utility of the
“Normal” strategy should be greater than other strategies.
Therefore, for each participant, the incentive provided by
the proposed mechanism should lead to UParticipant

N
�

UParticipant

OtherStrategy
, which can be formulated as follows:

(1) IC for MO:
The strategy set of MO is {Normal (N), Not Transmitting

(NTm)}. Therefore, we will compare the utility of MO with
N and MO with NTm:

UMO

N
� UMO

NTm
= UMO

N
+QSelected · bMO > 0 (85)

where UMO

N
� 0 due to the IR for EBM, and the revenue for

including records QSelected · bMO > 0. Therefore, the utility of
MO with N is greater than MO with NTm, ensuring IC for
MO.

(2) IC for T:
The strategy set of T is {Normal (N), Not Training (NTr),

Not Broadcasting (NBr)}. Therefore, we will first compare the
utilities of T with N and T with NTr:

UT

N
� UT

NTr
= UT

N
� (VRecM � V T

Now) · C
+ bT + kTransmit · |M |

> �(VRecM � V T

Now) · C + bT

> 0

(86)

where (VRecM � V T

Now) · C is the value of the version gap
between the received model (the latest model) and the model
that T has already owned (the out-of-date model). The formula
bT � (VRecM � V T

Now) · C > 0 means that the deposit of T
should not be lower than the value of model (i.e., an effective
deposit discussed in Section III-B). Otherwise, T will not have
the motivation to train the model and just cheat for the latest
models by depositing a small amount of coins. Therefore, the
mechanism should have a condition:

bT > (VRecM � V T

Now) · C (87)

Then, we will compare the utilities of T with N and T with
NBr:

UT

N
� UT

NBr
=

 
�
VRecM � V T

Now + 1
�
· C +

QT

Selected · � · RCited

1� �

!

�
�
PComp ·D · ⌧ · |M |+ (1� s) · bT + kTransmit · |M |

+kEncrypt · |M |+QBroadcast · kTransmit · kExpand · |M |)
�
��
VRecM � V T

Now + 1
�
· C

�

+
�
PComp ·D · ⌧ · |M |+ bT + kTransmit · |M |

�

(88)

Eliminating the common terms, the formula can be presented
as:

UT

N
� UT

NBr
=

QT

Selected · � · RCited

1� �

�
�
(�s) · bT + kEncrypt · |M |

�

� (QBroadcast · kTransmit · kExpand · |M |)

(89)

Thus, to ensure UT

N
� UT

NBr
> 0, the mechanism should

satisfy:

QT

Selected · � · RCited

1� �
> (�s) · bT + kEncrypt · |M |

+QBroadcast · kTransmit · kExpand · |M |
(90)

where the condition can be formulated as:

RCited >
1

QT

Selected · �

⇣
(�s) · bT + kEncrypt · |M |

+QBroadcast · kTransmit · kExpand · |M |
⌘
· (1� �) (91)

Therefore, there are two conditions (Formula (87) and Formula
(91)) that should be satisfied in the mechanism design to
ensure IC for T.

(3) IC for DBM:
The strategy set of DBM is {Normal (N), Not Packing All

(NPA), Packing Improper Deposit Contracts (PI)}. Therefore,
we will first compare the utilities of DBM with N and DBM
with NPA:

UDBM

N
� UDBM

NPA
= (QDeposit · RDeposit � CMine)

� (QDepositLess · RDeposit � CMine)
(92)

The expression can be simplified as:

UDBM

N
� UDBM

NPA
= (QDeposit �QDepositLess) · RDeposit (93)

Since QDeposit > QDepositLess, we can know:

UDBM

N
� UDBM

NPA
> 0 (94)

Therefore, the utility of DBM with N is greater than DBM with
NPA. On the other hand, we will first compare the utilities of
DBM with N and DBM with PI:

UDBM

N
� UDBM

PI = (QDeposit · RDeposit � CMine)

� (�CMine)
(95)
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The expression can be simplified as:

UDBM

N
� UDBM

PI = QDeposit · RDeposit > 0 (96)

Therefore, the utility of DBM with N is greater than DBM
with PI. Overall, the IC for DBM can be ensured.

(4) IC for EBM:
The strategy set of EBM is {Normal (N), Not Generating

FHE Key (NG)}. Therefore, we will compare the utilities of
EBM with N and EBM with NG:

UEBM

N
� UEBM

NG
= UEBM

N
+ CMine > 0 (97)

where UEBM

N
� 0 due to the IR for EBM, and mining cost

CMine > 0, so the UEBM

N
�UEBM

NG
> 0. Therefore, the utility

of EBM with N is greater than EBM with NG, ensuring IC
for EBM.

(5) IC for TBM:
The strategy set of TBM is {Normal (N), Improper Testing

Cases (IT)}. Therefore, we will compare the utilities of TBM
with N and TBM with IT:

UTBM

N
� UTBM

IT
= UTBM

N
+ CMine > 0 (98)

where UTBM

N
� 0 due to the IR for TBM, and mining cost

CMine > 0, so the UTBM

N
�UTBM

NG
> 0. Therefore, the utility

of TBM with N is greater than TBM with IT, ensuring IC for
TBM.

(6) IC for SBM:
The strategy set of SBM is {Normal (N), Improper Rank

(IRa)}. Therefore, we will compare the utilities of SBM with
N and SBM with IRa:

USBM

N
� USBM

IRa
= USBM

N
+ CMine > 0 (99)

where USBM

N
� 0 due to the IR for TBM, and mining cost

CMine > 0, so the USBM

N
�USBM

IRa
> 0. Therefore, the utility

of SBM with N is greater than SBM with IRa, ensuring IC
for SBM.

C. Overall Condition Set

Overall, according to the calculation in the previous sub-
sections, the reward (R) of each block should satisfy the
following condition set (T1 - T8):

T1: To guarantee IR of MO, we need to let UMO

N
� 0,

thus:

RCited �
(1� �) ·

�
QSelected · (1� s) · bMO + kTransmit · |M |

�

QMO

Selected
(100)

T2: To guarantee IR of T, we need to let UT

N
� 0, that is:

RCited � (1� �)

QT

Selected · �
·
⇣
PComp ·D · ⌧ · |M |

+ (1� s) · bT + kTransmit · |M |+ kEncrypt · |M |
+QBroadcast · kTransmit · kExpand · |M |

�
�
VRecM � V T

Now + 1
�
· C

⌘
(101)

T3: To guarantee IR of DBM, we need to let UDBM

N
� 0,

thus:

RDeposit �
CMine

QDeposit
(102)

T4: To guarantee IR of EBM, we need to let UEBM

N
� 0,

that is:

RHashM � 1

QHashM
·
⇣
CMine + kTransmit · kExpand · |M |

+ CGenFHEKey � (VFHEM � V EBM

Now ) · C
⌘

(103)

T5: To guarantee IR of TBM, we need to let UTBM

N
� 0,

thus:
QEncryptedM · REncryptedM +QCases · RCase

� CMine +QCases · CUnit
GenTDCase

(104)

T6: To guarantee IR of SBM, we need to let USBM

N
� 0,

that is:

QVerifiedM · RVerifiedM +QVerifiedM ·QCases · RVerify

� CMine +QVerifiedM · kTransmit · kExpand · |M |
+QVerifiedM ·QCases · CUnit

Verify (105)

To satisfy IC, the utilities of the “Normal” strategy should
be greater than other strategies. According to Table II, some
participants’ other strategies have negative utilities, so they
will choose “Normal” obviously. Specifically, trainer T re-
quires additional constraints for the strategy of “Not Training”
and “Not Broadcasting”:

T7: For IC of T with “Not Training”, there is a sufficient
but not necessary condition that the deposit of T should not
be lower than the value of the model (i.e., an effective deposit
discussed in Section III-B). Otherwise, T will not have the
motivation to train the model.

bT > (VRecM � V T

Now) · C (106)

T8: For IC of T with “Not Broadcasting”, let UT

N
�UT

NBr
>

0:

RCited >
1

QT

Selected · �

⇣
(�s) · bT + kEncrypt · |M |

+QBroadcast · kTransmit · kExpand · |M |
⌘
· (1� �)

(107)

The fore-mentioned condition set is listed in Section III-C2.


