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Abstract
Recent advances in Artificial Intelligence (AI) have introduced a

popular paradigm in Machine Learning (ML) model development:

pre-training and domain adaptation. As both closed-source devel-

opers and open-source community lead in pre-training foundation

models, domain deployers face the dilemma about whether to use

closed-source models via API access or to host open-source models

on proprietary hardware. Using closed-source models incurs recur-

ring costs, while hosting open-source models requires substantial

hardware investments and may lead to potentially lagging advance-

ments. This paper presents a game-theoretical model to examine the

economic incentives behind the deployment choice and the impact

of open-source engagement strategies on technological innovation.

We find that deployers consistently opt for closed-source APIs when

the open-source community engages reactively by maintaining a

fixed performance ratio relative to closed-source advancements.

However, open-source models can become preferable when a proac-

tive open-source community produces high-performance models in-

dependently. Furthermore, we identify conditions under which the

engagement and competitiveness of the open-source community

can either foster or inhibit technological progress. These insights

offer valuable implications for market regulation and the future of

technology innovation.
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1 Introduction
The capability of ML, especially large language models (LLMs), has

seen a remarkable increase due to the scaling of training data, com-

putational resources, and model parameters [25, 42]. Most recently,

the paradigm of pretraining and domain adaptation has become

increasingly important in the development of LLMs [27]. The land-

scape of foundational models is characterized by two prominent

alternatives: open-source and closed-source. Domain experts are

typically responsible for deciding which technology to adopt. Con-

sequently, the development of end technology generally follows

the process of pre-training, deployment, and adaptation.

The foundational model market is becoming increasingly com-

petitive, primarily due to the emergence of open-source models.

Take LLMs as an example: Stanford has reported that of the 149

foundation models released in 2023, 98 were open-source models,

such as LLaMA [41], while 23 were closed-source and accessible

via public APIs, such as GPT-4 [32, 33]. Also, there has been a sig-

nificant increase in the proportion of models released with open

access [32]. Most recently, the release of the DeepSeek-V3 model

marked a milestone for open-source LLMs, as it is claimed to be

not only equivalent to GPT-4o but also achieve efficient inference

and cost-effective training [13, 16]. Clearly, the engagement of the

open-source community has created a competitive landscape for

the development of foundational models [1, 9].

The relationship between a competitive market and innovation

is complex, with competition capable of both hindering and foster-

ing innovation [17, 40]. Notably, competition between open-source

and closed-source models presents unique dynamics distinct from

typical firm-to-firm competition as open-source communities often
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operate with diverse motivations beyond profit, such as community-

driven improvement, accessibility, and transparency [4, 20, 31, 37].

Understanding how open-source versus closed-source competition

influence the society-level technological progress is essential, as it

can provide insights into the forces that drive or inhibit technologi-

cal innovation, with implications for future regulation.

Additionally, due to the engagement of the open-source com-

munity, deployers face a deployment dilemma, navigating complex

economic trade-offs in choosing which technology to adopt. On

one hand, self-hosting open-source technology entails high costs

associated with requisite hardware resources, such as GPUs[14].

On the other hand, using third-party APIs incurs recurring costs

[14]. Furthermore, the performance of foundational technology

directly impacts that of end technology, which further affects the

revenue generated in the end market [27]. Thus, the choice between

self-hosting open-source technology and utilizing third-party APIs

involves a complex trade-off from an economic perspective. Un-

derstanding this process is crucial to studying the economic and

technological consequences of open-source technology.

In this paper, we present a comprehensive game-theoretic model

to explore the interactions among a closed-source developer, an

open-source community, and a deployer, as well as how these in-

teractions affect the competitive and innovative outcomes of foun-

dation model development. We analyze three distinct scenarios: a

baseline scenario with no open-source engagement, a scenario
with proactive open-source engagement, where the community

independently innovates and determines model performance, and

a scenario with reactive open-source engagement, in which the

open-source community aligns its performance to maintain relative

parity with closed-source advancements.

Our analysis reveals that deployment choices consistently fall

into one of three primary outcomes: API-dominant, where open-
source engagement has no significant impact on market status or

decision making of other market players compared to scenarios

without an open-source alternative; API-strategic, where open-
source engagement prompts strategic behaviors from closed source

developers, yet developers remain incentivized to adopt closed-

source technology; and self-hosting, where open-source technol-
ogy completely supersedes the closed source option. The outcomes

are highly dependent on the strategy employed by the open-source

community. Our findings indicate that open-source engagement can

significantly reshape the innovation landscape for foundation mod-

els. Specifically, we identify conditions under which open-source

competition paradoxically hampers innovation by discouraging

closed-source developers from advancing foundational technolo-

gies, as well as scenarios where it fosters a “race-to-the-top,” en-

couraging closed-source developers to innovate more aggressively.

The main contributions of this paper are threefold. First, we pro-

vide a theoretical framework based onmulti-stage game and sub-
game perfect equilibrium to analyze the deployment dilemma

facing deployers and define three types of deployment outcomes.

Second, we investigate two distinct open-source engagement strate-

gies—proactive and reactive—and characterize the conditions under

which each strategy encourages or inhibits innovation in founda-

tional technologies. Finally, we discuss broader implications for

innovation, offering insights into how the open-source and closed-

source competition can support sustainable innovation.

2 Related Work
There is extensive research on technology innovation and competi-

tion. Our work specifically examines, from an economic perspective,

the impact of open-source community on innovation within the

paradigm of pre-training and fine-tuning.

Open-Source Community. The open-source community has

driven significant technological advances by providing freely ac-

cessible open-source software (OSS) [5, 12]. For instance, 98 of the

149 foundational LLMs released in 2023 were open-source models,

such as LLaMA [32, 41]. Moreover, recent research and technical

reports have shown that open-source LLMs are rapidly catching up

to closed-source commercial LLMs, with the performance gap often

supplemented or even closed [1, 9, 13]. Most recently, DeepSeek-

V3 has achieved performance comparable to leading closed-source

models such as GPT-4o[13, 16]. However, the incentives behind

open-source initiatives have been proven to be far beyond profit

[4, 20, 31, 37]. Despite the significant role of OSS, there is still a

scarcity of research that quantitatively assesses its value [21]. Our

work contributes to the literature by investigating how the open-

source community’s engagement strategies in innovation influence

market dynamics and technological outcomes.

Technology Deployment. For domain-specific deployers, de-

ciding between self-hosting open-source technology and adopting

closed-source technology has been challenging. Adopting an API

may raise concerns such as data ownership, privacy, and stabil-

ity [9, 10]. However, self-hosting can be prohibitively expensive

due to high hardware requirements. For instance, "regular 16-bit

adaptation of a LLaMA 65B parameter model requires more than

780 GB of GPU memory" [14]. Moreover, model performance plays

a crucial role in the adoption decision. For example, open-source

options may incur additional adaptation costs due to their founda-

tional capabilities lagging behind, while cloud APIs also limit the

developer’s ability to adapt models with custom data [23]. Given

the complexity of the adoption decision, our paper is the first to

model this deployment dilemma from an economic perspective.

Economic Models of Technology Innovation. Many studies

have addressed technological innovation, production, and coopera-

tion between firms. Empirical research has shown that the relation-

ship between competition and innovation can be either negative or

positive, depending on multiple factors such as market structure

and innovation strategies [17, 40]. However, the incentives for in-

novation are typically tied to the profit, which does not apply to

the open-source community. Bhaskaran and Krishnan [3] present a

model of joint work and decision-making between collaborating

firms for new product development. However, this model focuses

on cooperation rather than competition between firms. Besides, our

paper distinguishes by considering the innovation process within

the pre-training and adaptation paradigm.

Machine Learning and Game Theory. Our paper broadly
contributes to the field of work that employs game theory to analyze

the economics of technology, particularly machine learning (ML)

models [26, 30, 34]. Specifically, it adds to the study of technology

competition and innovation with open-source engagement. Laufer

et al.[27] propose a model for "fine-tuning games"; however, their

work focuses on joint development and bargaining between two

firms instead of open-source engagement and competition. Later,
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Xu et al.[43] propose a model to explore how foundation model

openness affects the "fine-tuning game" with competing deployers.

However, their model neglects the foundation model developer’s

direct contribution to innovation.

3 Model
In this section, we introduce the game-theoretic framework, with

three variations. The baseline model includes only a closed-source

foundation model developer, a domain-specific deployer, and end

users. In the other two models, an open-source community is intro-

duced, each employing a distinct strategy in technology innovation.

Both the closed-source developer and the open-source commu-

nity focus only on foundation technology, while the deployer must

choose one technology for deployment and adaptation.

3.1 Model Setting
Closed-source Technology Developer. The developer F develops

a closed-source foundation technology to a performance level 𝛼0 ∈
R+
0
and prices the unit usage of the API as 𝛾𝑐 (𝛾 > 1), where 𝑐 ∈ R+

is the unit cost of operating the technology, and 𝛾 is a multiplier

that determines the price.

Open-Source Community. The open-source community 𝑂

provides a technology at performance level𝛼 ∈ R+
0
for free adoption.

We define 𝑂 as either reactive or proactive. Specifically, reactive
𝑂 means that 𝑂 maintains the relative performance of the open-

source technology in relation to the closed-source one, according

to a parameter 𝑚, such that 𝛼 = 𝑚𝛼0. In contrast, proactive 𝑂

means that 𝑂 independently decides the performance level of the

open-source model 𝛼 , which is no influenced by 𝛼0.

Domain-specificDeployer.The deployer 𝑆 first decideswhether
to self-host the open-source technology or use the closed-source

API, captured by a variable 𝐼 : the open-source option if 𝐼 = 0 and

the API option if 𝐼 = 1. The deployer then adapts the technology to

a level 𝛼1 ∈ R+
0
, where 𝛼1 ≥ 𝛼0, and sets the unit price of the end

technology as 𝑝 ∈ R+
0
. Notably, 𝑆 must operate its own hardware

infrastructure if hosting the open-source technology and purchase

the API if using the closed-source technology.

End Users. The end users 𝑈 consume the technology, resulting

in a market demand 𝐷 . The market demand is determined by both

technology’s price 𝑝 and technology’s performance 𝛼1 [19, 38, 44].

We assume there is a function 𝐷 : R+
0
× R+

0
→ R+ such that

𝐷 (𝑝, 𝛼1) is the demand in the end market with technology at level

𝛼1 and unit price 𝑝 . 𝐷 (𝑝, 𝛼1) is monotonically increasing with 𝛼1
and monotonically decreasing with 𝑝 . We assume that end users

cannot consume the foundation technology directly and the demand

function is publicly known.

Revenue. Revenue is calculated as demand multiplied by unit

price [36]. For each unit of the end technology consumed, one unit

of API will be used simultaneously if the closed-source technology

is deployed as the foundation technology. The developer F gains

revenue 𝑅𝐹 = 𝛾𝑐𝐷 (𝑝, 𝛼1)𝐼 by providing inference API to S. The
deployer S gains revenue 𝑅𝑆 = 𝑝𝐷 (𝑝, 𝛼1) from the end market.

Cost. Both 𝐹 and 𝑆 have two parts of cost: technology production
(development or adaptation) cost and operation cost. 𝐹 has a devel-

opment cost 𝐶𝐹 (𝛼0) : R+0 → R+
0
to produce a general technology

at level 𝛼0 and an operation cost of 𝑐 per unit. 𝑆 faces a adapting

cost𝐶
api
𝑆

(𝛼1;𝛼0) : R+ → R+ to adapt the closed-source technology

from level 𝛼0 to 𝛼1 or a cost function 𝐶
self
𝑆

(𝛼1;𝛼) : R+
0
→ R+

0
to

adapt the open-source technology from level 𝛼 to 𝛼1. Besides, 𝑆

faces an operation cost of 𝑐 per unit if self-hosts open-source tech-

nology or 𝛾𝑐 per unit if uses API. We assume these cost functions

are publicly known.

Utility. The utility of developer F, denoted as 𝑈𝐹 , and of de-

ployer S, denoted as𝑈𝑆 , are defined as revenue minus cost: 𝑅𝑖 −𝐶𝑖 ,
where 𝑖 = 𝑆, 𝐹 . We introduce the following notations for utility:

𝑈
api
𝑆
,𝑈

self
𝑆
,𝑈

api
𝐹

,𝑈
self
𝐹

to represent the utilities of the deployer 𝑆 , the

developer 𝐹 under the API and self-hosting scenarios. The formulas

are as follows:

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐)𝐷 (𝑝, 𝛼1) −𝐶api
𝑆

(𝛼1;𝛼0) (1)

𝑈
self
𝑆

= (𝑝 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶self
𝑆

(𝛼1;𝛼) (2)

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐)𝐷 (𝑝, 𝛼1) −𝐶𝐹 (𝛼0) (3)

𝑈
self
𝐹

= 0 (4)

Technology InnovationOutcome (Societal Level).The societal-
level technology innovation outcomes are defined as:

𝛼soc
0

= 𝐼𝛼0 + (1 − 𝐼 )𝛼 ;𝛼soc
1

= 𝛼1 . (5)

3.2 Game Process
The game process varies according to the open-source commu-

nity’s engagement strategy, resulting in three distinct models as

summarized below and illustrated in Figure 1.

Baseline Game - No Open-Source Engagement. In this sce-

nario, the open-source community 𝑂 chooses not to engage in the

market. Thus, the developer 𝐹 first brings the foundation technol-

ogy to a performance level 𝛼0 and sets the unit price for API usage

as 𝛾𝑐 by deciding the multiplier 𝛾 . Then, the deployer 𝑆 adapts the

technology to level 𝛼1 and sets the unit price for end technology as

𝑝 . The end users consume the technology with demand 𝐷 (𝑝, 𝛼1).
Revenue is generated for both 𝐹 through API usage fees and 𝑆

through end-user sales.

Game 1 - Proactive Open-Source Engagement. In this sce-

nario, the open-source community 𝑂 adopts a proactive engage-

ment strategy. First, 𝑂 independently develops its technology to

level 𝛼 . Second, the closed-source developer 𝐹 develops its foun-

dation technology to level 𝛼0 and sets the API unit price as 𝛾𝑐 by

choosing the multiplier 𝛾 . The deployer 𝑆 then chooses between

self-hosting the open-source technology or accessing the closed-

source technology via API. After deployment, 𝑆 adapts the selected

technology to level 𝛼1 and sets the unit price 𝑝 , resulting in demand

𝐷 (𝑝, 𝛼1) from end users. The consumption of the end technology

generates revenue for the deployer, and for the developer as well,

but only if the closed-source technology is chosen.

Game 2 - Reactive Open-Source Engagement. In this sce-

nario, the open-source community𝑂 follows a reactive engagement

strategy. It initially announces this approach by specifying a perfor-

mance ratio𝑚 to indicate how closely it will track the closed-source

technology developed by 𝐹 . Once 𝐹 has brought its technology to

level 𝛼0 and sets the API price as 𝛾𝑐 , 𝑂 offers an open-source alter-

native at level𝑚𝛼0. The subsequent steps, including deployment,

adaptation, and consumption, are identical to those in Game 1.
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(a) Baseline Game - No Open-source Engagement
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2. Closed-source Development1. Open-source Development
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𝑂: 𝛼 = 𝑚𝛼0
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Developer 𝐹:  𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷

3. Consumption2. Deployment & Adaptation

No Open-source

1. Closed-source Development

Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(b) Game 1 - With Reactive Open-source Engagement

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 End users 𝑆: 𝐷

4. Consumption3. Deployment & Adaptation

Proactive Open-source

2. Closed-source Development1. Open-source Development

Open-source 
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Reactive Open-source
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Developer 𝐹:  𝛼0, 𝛾

Deployer 𝑆: 𝛼1, 𝑝 (𝐼 = 1) End users 𝑆: 𝐷
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No Open-source
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Foundation Technology Launch End Technology Launch

Developer 𝐹:  𝛼0 , 𝛾

Deployer 𝑆: 𝐼, 𝛼1 , 𝑝 

4. Consumption3. Deployment & Adaptation2. Open-source Development1. Closed-source Development

(c) Game 2 - With Proactive Open-source Engagement

Figure 1: An illustration of the processes for the three games. Game 1 and Game 2 differ from the baseline model in the
foundation technology development stage, as they involve open-source community. In Step 2 of the baseline game, 𝐼 = 1 always
holds, whereas in Game 1 and Game 2, 𝐼 can be either 0 or 1, reflecting the deployment decision. The distinction between Game
1 and Game 2 arises from the strategy adopted by the open-source community.

3.3 Solution of the Model
In this section, we provide the general equilibrium of each model de-

rived through backward induction, following the sequential decision-

making of the deployer 𝑆 and the developer 𝐹 . The solution involves

two key steps.

Step 1: Assuming a fixed 𝛼0 and 𝛾 (or also 𝛼), 𝑆 maximizes its

utility by choosing the optimal technology to deploy, the optimal

domain technology level 𝛼1, and the optimal price 𝑝 . Formally, 𝑆

solves the following optimization problem:

𝐼∗, 𝛼∗
1
, 𝑝∗ = arg max

𝐼 ,𝛼1,𝑝
𝐼𝑈

api
𝑆

+ (1 − 𝐼 )𝑈 self
𝑆

. (6)

The deployer 𝑆 will choose to self-host the technology if its

utility from self-hosting, denoted as 𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗), is greater than

its utility from using the API service, denoted as 𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗).

Step 2 in Baseline Game: Anticipating 𝑆’s response to its de-

cisions regarding the foundation technology level 𝛼0 and the in-

ference price parameter 𝛾 , 𝐹 sets optimal 𝛼0 and 𝛾 to maximize its

own utility. This leads to the following optimization problem for 𝐹 :

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (7)

Step 2 in Game 1 and Game 2: Similar to the step 2 in the

baseline game, 𝐹 would optimize its utitlity by deciding:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) . (8)

As 𝐹 receives revenue only if 𝑆 decides to use the API, Step 2 is

only meaningful when I = 1, which means the restriction:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≥ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (9)

Also, 𝐹 would develop the technology only when it expects a posi-

tive utility, as𝑈
api
𝐹

(𝛼∗
0
, 𝛾∗, 𝛼∗

1
, 𝑝∗) ≥ 0. Else, 𝐹 would exit the market.

The solution depends on market conditions and the engagement

strategy of 𝑂 . Thus, we offer a set of definitions to help character-

ize the possible regimes of solutions according to the developer’s

strategic behavior and the deployer’s deployment decisions.

Definition 3.1 (API-DOMINANT SOLUTION). TheAPI-dominant
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =

argmax𝛼0,𝛾 𝑈
api
𝐹

, naturally leads to𝑈
self
𝑆

≥ 𝑈 api
𝑆

and𝑈
api
𝐹

≥ 0 . In

this situation, 𝑆 chooses to use API as it naturally dominates the

self-hosting option.

Definition 3.2 (API-STRATEGIC SOLUTION). The API-strategic
solution is the solutionwhen developer 𝐹 ’s optimal decision,𝛼∗

0
, 𝛾∗ =
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argmax𝛼0,𝛾 𝑈𝐹,api under the constraint 𝑈
self
𝑆

≥ 𝑈 api
𝑆

naturally sat-

isfies 𝑈
api
𝐹

≥ 0, while only 𝛼∗
0
, 𝛾∗ = argmax𝛼0,𝛾 𝑈𝐹,api leads to

𝑈
self
𝑆

< 𝑈
api
𝑆

. In this situation, 𝐹 strategically incentivizes 𝑆 to

choose the API by ensuring that 𝑆 achieves greater profit from the

API option compared to the self-hosting option.

Definition 3.3 (SELF-HOSTING SOLUTION). The self-hosting
solution is the solution when no sets of {𝛼0, 𝛾} exists that simul-

taneously satisfies 𝑈
self
𝑆

≥ 𝑈 api
𝑆

and 𝑈
api
𝐹

≥ 0 . In this situation, 𝑆

opts to self-host the open-source technology rather than utilize the

API provided by 𝐹 .

Notice that any solution will fall into one of three categories: an

API-dominant solution, an API-strategic solution, or a self-hosting

solution. Analyzing the general form is challenging due to multi-

ple sequential decision steps, each requiring the consideration of

multiple factors. At each stage, either the developer or deployer

must determine optimal values for multiple variables such as per-

formance levels, pricing, and deployment choices, which interact

in complex ways across stages. This interdependence makes deriv-

ing a general solution intricate, necessitating specifications to gain

clearer insights. Accordingly, in Section 4, we present theorems

about the solutions under specified demand and cost functions. Sub-

sequently, in Section 5, we present theorems about technological

outcomes within a broader class of utility functions.

4 Analysis of Separable Multiplicative Demand
and Quadratic Cost

In order to produce closed-form solutions and understand how the

players in the model interact with each other, we take the form

of separable multiplicative demand and quadratic cost, which are

commonly used in business research.

The demand function is expressed in separable multiplicative

form: 𝐷 (𝑝, 𝛼1) = 𝑑1 (𝑝) ∗ 𝑑2 (𝛼1), where 𝑑1 (𝑝) measures the effect

of price and 𝑑2 (𝛼1) measures the effect of quality [2, 11]. For the

price-dependent part, the linear model has been widely used in

the economic and business literature, including theoretical models

[6, 15, 35, 36, 39] and empirical estimations [7, 22]. For the quality

effect, we take the form 𝑑2 (𝛼1) = 𝛼1 [29]. In our setting, quality

refers to the level of technological development. Thus, we get the

demand function as:

𝐷 (𝑝, 𝛼1) = (𝑎 − 𝑏𝑝)𝛼1 (10)

Here, 𝑎 > 0 and 𝑏 > 0 are constant parameters representing the

market size and price sensitivity respectively. The demand would

decrease with price and increase with product quality. Also, there

would be no sales if the quality (technology level) is zero.

The quadratic form for modeling cost is widely adopted in the

literature on economics and management science [3, 8, 18, 24, 28,

44]. Following Laufer et al. [27], we assume that the cost increases

quadratically with advancements in technology:

𝜙 (𝛼0) = 𝐾𝐹𝛼20 (11)

𝜙 (𝛼1;𝛼0) = 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (12)

𝜙 (𝛼1;𝛼) = 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (13)

Here, 𝐾𝐹 , 𝐾
self
𝑆

, and 𝐾
api
𝑆

are positive constants, reflecting that mar-

ginal costs should increase with technology advancement [27]. Note

that hardware costs are always included in the pre-training stage.

However, in the adaptation stage, deployer 𝑆 does not need to set

up hardware if using APIs. Besides, non-hardware costs, including

expenses such as labor, exist in both stages. Thus, 𝐾𝐹 and 𝐾
self
𝑆

include both non-hardware and hardware costs while 𝐾
api
𝑆

includes

only non-hardware costs. The cost factors are decomposed as:

𝐾𝐹 = 𝐾𝑃𝑅𝐸 + 𝐾𝐺 (14)

𝐾
api
𝑆

= 𝐾𝐹𝑇 (15)

𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 (16)

• 𝐾𝑃𝑅𝐸 represents the non-hardware cost component in the

pre-training cost 𝐾𝐹
• 𝐾𝐹𝑇 represents the non-hardware cost component in the

adapting cost 𝐾
self
𝑆

and 𝐾
api
𝑆

• 𝐾𝐺 represents the hardware cost component in the pre-

training cost 𝐾𝐹 and the adapting cost 𝐾
self
𝑆

Thus, the utilities of developer 𝐹 , deployer 𝑆 , and end users 𝑈

are as follows:

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2 (17)

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20 (18)

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2 (19)

𝑈
self
𝐹

= 0 (20)

4.1 Equilibrium without 𝑂
Theorem 4.1 (API-Dominant Solution). Without 𝑂 , the equi-

librium always falls into the API-dominant solution, yielding the
following strategies:

𝛾∗ =
5𝜃 + 3 − 2𝛽 (3 + 𝜃 ) −

√
𝛿

8(1 − 𝛽) , (21)

𝛼∗
0
=

𝑏

4𝐾𝐹

(
𝑐𝛾∗ − 𝑐

) (𝑎
𝑏
− 𝑐𝛾∗

)
, (22)

𝑝∗ =
𝑎

𝑏
+ 𝑐𝛾∗, (23)

𝛼∗
1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
, (24)

where:

𝛿 = (5𝜃 + 3 − 2𝛽 (3 + 𝜃 ))2 − 16(1 − 𝛽) (𝜃2 + 3𝜃 − 2𝛽 (1 + 𝜃 )),

𝜃 =
𝑎

𝑏𝑐
, 𝛽 =

𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

A proof of the above result is provided in Appendix A.1. No-

tice that the deployer 𝑆’s decision on adaptation effort equals

𝛼∗
1
− 𝛼∗

0
=
𝑏( 𝑎𝑏 −𝑐𝛾∗)2

8𝐾𝐹𝑇
, which is independent of developer 𝐹 ’s de-

cision on foundation technology performance 𝛼∗
0
. This finding is

consistent with the finding from a previous research by Laufer

et al. [27]. Moreover, both the developer 𝐹 ’s decision on founda-

tion technology performance 𝛼∗
0
and the deployer 𝑆’s decision on

domain-specific technology performance 𝛼∗
1
are independent of

the open-source technology performance, which is reasonable as
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the open-source technology is naturally dominated by the closed-

source technology and cannot influence the market. The results are

plotted in Appendix Figure B.1.

4.2 Subgame Perfect Equilibrium with a
Reactive 𝑂 under a Fixed𝑚

When the open-source community adopts a reactive strategy, the

subgame perfect equilibrium under a given𝑚 may lead to differ-

ent solutions based on various market factors, captured by cost-

related parameters {𝐾G, 𝐾FT, 𝐾PRE, 𝑐} and demand-related parame-

ters {𝑎, 𝑏}. Among these factors, we focus on 𝐾G, which represents

the hardware cost. First, we specify the forms of solutions. Then, we

demonstrate how 𝐾G and𝑚 characterize the equilibrium solution.

Theorem 4.2. With a reactive 𝑂 , the API-dominant solution re-
sults in strategies that are identical in form to those presented in
Theorem 4.1.

This conclusion is straightforward because, under anAPI-dominant

solution, the engagement of the open-source community does not

affect the dynamics of the original game, leaving the strategic out-

come unchanged.

Theorem 4.3 (API-Strategic Solution with Reactive O).

With reactive 𝑂 , the API-strategic solution yields strategies:

𝐼∗ = 1, 𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗), 𝛼∗

1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,

and 𝛼∗
0
and 𝛾∗ is the solution of:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )

=
−𝑏𝑐2 ( (𝜃−𝛾∗ )2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )3+(𝜃−𝛾 )𝛼∗

0

,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.3 is provided in Appendix A.2. Note that

the existence of a feasible solution in Theorem 4.3 is guaranteed by

Theorem 4.4, while its uniqueness is ensured by maximizing 𝑈𝐹 .

Theorem 4.4 (Guaranteed API Outcome). With reactive 𝑂 ,
the equilibrium always falls into either an API-dominant or an API-
strategic solution, meaning there always exists a set of {𝛼∗

0
, 𝛾∗, 𝛼∗

1
, 𝑝∗}

that satisfies 𝑈 self
𝑆

≥ 𝑈 api
𝑆

and𝑈𝐹 ≥ 0 simultaneously.

A proof of Theorem 4.4 is provided in Appendix A.3. Notably,

when 𝑂 adopts a reactive strategy, 𝐹 can influence technology

innovation in a way that strategically deters𝑂 and encourages 𝑆 to

adopt the closed-source technology. Counterintuitively, even when

𝑚 is high—indicating that the open-source technology significantly

outperforms the closed-source technology—the deployer 𝑆 is still

incentivized to utilize the closed-source technology via API.

Next, we illustrate the impact of reactive open-source engage-

ment on technological outcomes using numerical results. In Figure 2,

we show the results using parameters (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾FT =

𝐾PRE = 1), and let𝑚 range from 0.1 to 1.4. The robustness checks

are provided in Appendix C.

As shown in Figure 2a, foundation technology innovation is gen-

erally hindered when𝑚 is high. This is because, at higher𝑚 values,
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Figure 2: Technological Outcomes - No vs. Reactive Open-
source Engagement (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

the closed-source developer may choose to strategically reduce

technology performance to deter open-source alternatives. When

𝑚 decreases to a low level, the closed-source developer can gain a

greater technology advantage by enhancing performance, which

becomes an economical strategy to attract the deployer toward the

closed-source API.

Interestingly, we observe in Figure 2b that end technology expe-

riences higher levels of innovation. This outcome arises because the

closed-source developer not only adjusts technology performance

but also lowers the API price, allowing the deployer to achieve

higher unit profit from end technology. This incentivizes the de-

ployer to further adapt the technology to a higher level, thereby

driving technology innovation in the specific domain.

4.3 Subgame Perfect Equilibrium with a
Proactive 𝑂 under a Fixed 𝛼

Similar to the previous section, we first specify the forms of each

solution under a fixed 𝛼 and then analyze the equilibrium solution.

Theorem 4.5. With a proactive 𝑂 , the API-dominant solution
results in strategies that are identical in form to those presented in
Theorem 4.1.

1493



Deployment Dilemma and Innovation Paradox WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Theorem 4.6 (API-Strategic Solution with Proactive O).

With proactive 𝑂 , the API-strategic solution yields strategies:

𝐼∗ = 1, 𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐𝛾∗), 𝛼∗

1
= 𝛼∗

0
+
𝑏

(
𝑎
𝑏
− 𝑐𝛾∗

)
2

8𝐾𝐹𝑇
,

and 𝛼∗
0
and 𝛾∗ are the solution of:

16

(
(𝜃 − 𝛾∗)2𝛼∗

0
− (𝜃 − 1)2𝛼

)
=

(
(𝜃−1)4

(𝐾FT+𝐾G ) −
(𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾FT
(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )

=
−4𝑏𝑐2 (𝜃−𝛾∗ )

8𝛼∗
0
+ 𝑏𝑐2
𝐾FT

(𝜃−𝛾∗ )2
,

,where 𝜃 = 𝑎
𝑏𝑐
.

A proof of Theorem 4.6 is provided in Appendix A.4. Note that

the solution from Theorem 4.6 must always satisfy 𝛼∗
0
≥ 0, 𝛾∗ ≥ 1,

and 𝑈𝐹 (𝑝∗, 𝛼∗1 , 𝛼
∗
0
, 𝛾∗) ≥ 0. If these conditions are not met, the

equilibrium defaults to the self-hosting solution described below.

Theorem 4.7 (Self-Hosting Solution with Proactive O).

With proactive 𝑂 , self-hosting solution yields strategies:

𝛾∗ = 1, 𝛼∗
0
= 0, 𝐼∗ = 0, 𝑝∗ =

1

2

(𝑎
𝑏
+ 𝑐), 𝛼∗

1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺 )
,

Aproof of Theorem 4.7 is provided inAppendix A.5. Note that the

developer 𝐹 ’s decision on the foundation technology performance

𝛼∗
0
is always zero, indicating that 𝐹 exits the game. Consequently,

the deployer 𝑆 adopts a self-hosting approach. Interestingly, the

unit price of the end technology, 𝑝 , remains constant. This is due to

the marginal cost of operations being fixed at 𝑐 and the end users’

price sensitivity remaining stable at𝑏. Additionally, as the hardware

cost 𝐾G decreases, 𝑆 is incentivized to enhance the technology to a

higher performance level as the incremental advancement (𝛼1 − 𝛼)
grows. Also, the utilities of the deployer,𝑈𝑆 , and the end users,𝑈𝑈 ,

increase as the hardware cost 𝐾G decreases.

Theorem 4.8 (Existence of Self-Hosting Outcome). With
proactive𝑂 , given cost-related parameters {𝐾FT, 𝐾PRE, 𝑐} and demand-
related parameters {𝑎, 𝑏}, there exists a threshold 𝛼𝐻 ∈ R+ such that
∀𝐾G, the game results in a self-hosting solution if 𝛼 ∈ (𝛼𝐻 , +∞).

A proof of Theorem 4.8 is provided in Appendix A.6. The insight

is that when 𝑂 adopts a proactive strategy and develops the open-

source technology to a sufficiently high performance level, the

developer 𝐹 may initially be able to incentivize the deployer by

either enhancing the closed-source technology or lowering the

API price. During this process, profit gradually transfers from the

developer to the deployer. However, as the performance of the open-

source technology continues to increase, a point is reached where

the developer can no longer offer enough incentives to attract the

deployer while still ensuring its own profitability. Consequently, if

the open-source technology achieves a high enough performance

level, the closed-source developer foresees an unprofitable market

and opts not to enter, ultimately resulting in a self-hosting outcome.

Next, we illustrate the impact of proactive open-source engage-

ment on technology outcomes using numerical results. In Figure 3,

we show the results using parameters (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾FT =

𝐾PRE = 1), and let𝑚 range from 0.5 to 4. The robustness checks

are provided in Appendix C.
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Figure 3: Technology Outcomes - No vs. Proactive Open-
source Engagement (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

As shown in Figure 3, proactive open-source engagement may

lead to an increase in both foundation and end technology perfor-

mance levels. The intuition is that when the open-source commu-

nity independently advances, rather than adjusting to closed-source

performance, the closed-source developer cannot deter open-source

technology by strategically reducing model performance. Instead,

the developer enhances the closed-source technology and lowers

the API price to attract deployers to use the closed-source API,

ultimately benefiting both foundation and end technology.

However, two horizontal lines appear in Figure 3a at 𝛼 = 3.5 and

𝛼 = 4, respectively. This indicates that, at these levels, open-source

technology becomes advanced enough to drive the closed-source

developer to exit the market. As we can see in Figure 3a, these

levels of open-source innovation may actually hurt innovation in

both foundation and end technology.The intuition is that the API

option naturally forms a sharing scheme for hardware infrastruc-

ture between foundation model developers and deployers, which

can be beneficial. However, self-hosting open-source models incurs

inefficiencies in hardware infrastructure usage. Thus, in extreme

conditions where deployers are on the verge of choosing between

an open-source or closed-source model, the technology level un-

der the closed-source option can be higher than that under the

open-source option.
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5 Impact of Open-source Engagement on
Foundation Technology Innovation

In the previous section, we showed the impact of open-source en-

gagement using numerical results under specified demand and cost

functions. In this section, we examine the technological outcomes

within a broader class of utility functions. First, we define the class

of utility functions to which our conclusions apply. Then, we for-

mally state the conditions under which open-source engagement

may either encourage or hinder foundation technology innovation.

5.1 Concave and Unimodal Utility
First, we introduce two assumptions regarding the utility functions.

Definition 5.1 (Strictly Unimodal Function). A function 𝑓 : R ×
R → R is called strictly unimodal over 𝑥 and 𝑦 if there exists a

value𝑚 ∈ 𝐷 ⊂ R such that 𝑓 is strictly increasing for 𝑥 ≤ 𝑚 and

strictly decreasing for 𝑥 ≥ 𝑚, and there exists a value 𝑛 ∈ 𝐷 ⊂ R
such that 𝑓 is strictly increasing for 𝑦 ≤ 𝑛 and strictly decreasing

for 𝑦 ≥ 𝑛.
Assumption 1: The developer’s utility 𝑈𝐹 (𝛼0, 𝛾) is strictly con-

cave; that is,
𝜕2𝑈𝐹
𝜕𝛼2

0

< 0 and
𝜕2𝑈𝐹
𝜕𝛾2

< 0.

Assumption 2: The developer’s utility𝑈𝐹 (𝛼0, 𝛾) is strictly uni-

modal. This implies there exists a maximum utility at some values

of 𝛼0 and 𝛾 over their respective ranges.

Note: that the analysis in Section 4 satisfies these assumptions,

ensuring that our conclusions hold within that framework.

5.2 Foundation Technology Innovation
Here, we formally state the theorems identifying the conditions

under which open-source community engagement enhances or

hinders foundation technology innovation.

Theorem 5.2. Assume that the developer’s strategy with no open-
source engagement is {𝛼∗

0
, 𝛾∗}, yielding utility 𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗). After

the engagement of a reactive open-source community, the developer’s
strategy shifts to {𝛼 ′∗

0
, 𝛾 ′∗}, yielding utility 𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗).

The foundation technology level decreases (𝛼 ′∗
0

< 𝛼∗
0
) if:

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
and

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0.

Conversely, the foundation technology level increases (𝛼 ′∗
0

> 𝛼∗
0
)

if:
𝜕𝑈

api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
and

𝜕2𝑈𝐹

𝜕𝛾 𝜕𝛼0
< 0.

Theorem 5.3. Assume that the developer’s strategy with no open-
source engagement is {𝛼∗

0
, 𝛾∗}, yielding utility 𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗). After

proactive engagement by the open-source community, the developer’s
strategy shifts to {𝛼 ′∗

0
, 𝛾 ′∗}, yielding utility 𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗).

The foundation technology level increases (𝛼 ′∗
0

> 𝛼∗
0
) if:

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0.

The proofs for Theorem 5.2 and Theorem 5.3 are provided in

Appendix A.7 and Appendix A.8, respectively. Note that these con-

ditions are sufficient but not necessary for the stated outcomes.

These theorems highlight the differences and similarities be-

tween reactive and proactive open-source engagement in influenc-

ing foundation technology innovation as below.

• Reactive Open-source Engagement: When the deployer’s

utility gain from using the API is less sensitive to 𝛼0 than the

self-hosting utility, the developer may strategically reduce

the open-source competitiveness by lowering the technol-

ogy performance. Due to the positive interaction between

𝛼0 and 𝛾 in closed-source models, lowering 𝛾 can help miti-

gate the rate of utility decline resulting from reduced tech-

nology performance. Conversely, if the developer observes

that the deployer’s utility from the API is highly sensitive

to 𝛼0 compared to self-hosting utility, a ’race-to-the-top’

scenario arises where the developer innovates more aggres-

sively. With a negative interaction between 𝛼0 and 𝛾 , lower-

ing 𝛾 helps counteract the rate of utility loss from potential

over-innovation. Additionally, a lower API price always in-

centivizes deployers to adopt the API.

• Proactive Open-source Engagement: As technology im-

proves, the developer’s utility may experience diminishing

returns. Given the negative interaction between 𝛼0 and 𝛾 ,

lowering𝛾 can help reduce the rate of utility decline from po-

tential over-innovation. A lower API price also incentivizes

deployers to adopt the API. However, if the open-source

models are too advanced, the closed-source model developer

may exit the market.

6 Conclusion
This paper proposes a theoretical model that analyzes the interac-

tions among closed-source developers, the open-source community,

and deployers under the paradigm of pretraining and adaptation.

By examining three scenarios surrounding open-source engage-

ment strategy — no, proactive, and reactive engagement — the

model highlights how different open-source strategies can shape

deployment outcomes and impact innovation.

Our analysis are particularly valuable for innovators and regula-

tors, as they provide insights into factors impacting technological

progress. We encourage regulators to design policies to address

key concerns such as ownership of technology and hardware price.

For example, policymakers might incentivize open-source contri-

butions through funding mechanisms or tax benefits, ensuring that

the community has sufficient resources to innovate independently.

Additionally, regulators must prevent unethical innovation through

mimicry and copying patents, especially within the open-source

community. Such interventions can help balance closed-source and

open-source models, ensuring sustainable innovation.

Future research could build on this model by investigating addi-

tional factors such as the diverse motivations within open-source

communities and the competition in end markets. These considera-

tions are particularly relevant as technologies continue to evolve,

especially the AI market. We believe that societal outcomes are

essential in shaping the technology market, and formalizing these

considerations through theoretical models can provide a more com-

prehensive view of the ecosystem. By doing so, researchers and

policymakers can help guide balanced and sustainable innovation

strategies that maximize societal benefits.
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A Proofs
A.1 Proof of Theorem 4.1
As 𝐼 = 1, the utility functions of are:

𝑈
api
𝑆

= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾api
𝑆

(𝛼1 − 𝛼0)2,

𝑈
api
𝐹

= (𝛾𝑐 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾𝐹𝛼20
where:

𝐾
api
𝑆

= 𝐾𝐹𝑇 , 𝐾
api
𝐹

= 𝐾𝑃𝑅𝐸 + 𝐾𝐺 .
Step 1: Utility Maximization of 𝑆 for a Fixed 𝛼0 and 𝛾

𝜕𝑈
api
𝑆

𝜕𝑝
= (𝑎 + 𝑏𝑐𝛾 − 2𝑏𝑝)𝛼1 = 0

⇒ 𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

.

𝜕𝑈
api
𝑆

𝜕𝛼1
= (𝑝 − 𝛾𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

api
𝑆

(𝛼1 − 𝛼0) = 0.

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

, we get:

𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

The optimal choices for 𝑆 are therefore:

𝑝∗ =
𝑎
𝑏
+ 𝑐𝛾
2

, 𝛼∗
1
= 𝛼0 +

𝑏

(
𝑎
𝑏
− 𝑐𝛾

)
2

8𝐾𝐹𝑇
.

Step 2: Utility Maximization of 𝐹 Based on 𝑆 ’s Response

Substituting 𝑝∗ =
𝑎
𝑏
+𝑐𝛾
2

and 𝛼∗
1
= 𝛼0 +

𝑏 ( 𝑎𝑏 −𝑐𝛾)2
8𝐾𝐹𝑇

, we have:

𝑈
api
𝐹

=
1

2

𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)
(
𝛼0 +

𝑏𝑐2 (𝜃 − 𝛾)2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 ,

𝑈
api
𝑆

=
1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4,

, where 𝜃 = 𝑎
𝑏𝑐

𝜕𝑈
api
𝐹

𝜕𝛼0
=

1

2

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0 = 0

⇒ 𝛼∗
0
=

(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾)
4𝐾𝐹

.

0 =
𝜕𝑈

api
𝐹

𝜕𝛾
=

1

2

𝑏𝑐2
(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT
(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)

)
,

⇒ 0 = 𝑒𝑞𝑎 · 𝛾2 + 𝑒𝑞𝑏 · 𝛾 + 𝑒𝑞𝑐 ,
where:

𝑒𝑞𝑎 = 4(1 − 𝛽),

𝑒𝑞𝑏 = 2𝛽 (3 + 𝜃 ) − 3 − 5𝜃,

𝑒𝑞𝑐 = 𝜃
2 + 3𝜃 − 2𝛽 (1 + 𝜃 ),

𝛽 =
𝐾𝐹𝑇

𝐾𝑃𝑅𝐸 + 𝐾𝐺
.

The discriminant 𝛿 is given by:

𝛿 = 𝑒𝑞2
𝑏
− 4 · 𝑒𝑞𝑎 · 𝑒𝑞𝑐 .

Solving for the optimal 𝛾 using the quadratic formula, we find:

𝛾∗ =
−𝑒𝑞𝑏 −

√
𝛿

2 · 𝑒𝑞𝑎
=

5𝜃 + 3 − 2𝛽 (3 + 𝜃 ) −
√
𝛿

8(1 − 𝛽) .

A.2 Proof of Theorem 4.3
From A.5, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

In this API case, 𝛼 =𝑚𝛼0, thus:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝑚𝛼0 +
𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

From Section A.1, we have:

𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 𝛾)2𝛼0 +
𝑏2𝑐4

64𝐾𝐹𝑇
(𝜃 − 𝛾)4

The goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) . (25)

Define the Lagrangian with multiplier 𝜆:

L = 𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗) + 𝜆

(
𝑈
api
𝑆

(𝛼∗
1
, 𝑝∗) −𝑈 self

𝑆
(𝛼∗

1
, 𝑝∗)

)
.


𝜕L
𝜕𝛼0

= 0,

𝜕L
𝜕𝛾 = 0,

𝜕L
𝜕𝜆

= 0

Thus, 

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆( 𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆( 𝜕𝑈
api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾 ) = 0,

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

Thus,
𝜕𝑈

api
𝐹

𝜕𝛼0
( 𝜕𝑈

api
𝑆

𝜕𝛾 − 𝜕𝑈
self
𝑆

𝜕𝛾 ) = 𝜕𝑈
api
𝐹

𝜕𝛾 ( 𝜕𝑈
api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
),

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗)

1497



Deployment Dilemma and Innovation Paradox WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

The partial derivatives of 𝑈
api
𝑆

and𝑈
self
𝑆

are as follows:

𝜕𝑈
api
𝑆

𝜕𝛼0
= 1

4
𝑏𝑐2 (𝜃 − 𝛾)2,

𝜕𝑈
api
𝑆

𝜕𝛾 = − 𝑏2𝑐4

16𝐾FT

(𝜃 − 𝛾)3 − 1

2
𝑏𝑐2 (𝜃 − 𝛾)𝛼0,

𝜕𝑈
self
𝑆

𝜕𝛼0
= 1

4
𝑚𝑏𝑐2 (𝜃 − 1)2,

𝜕𝑈
self
𝑆

𝜕𝛾 = 0,

𝜕𝑈
api
𝐹

𝜕𝛼0
= 1

2
(𝛾 − 1)𝑐 (𝑎 − 𝑏𝑐𝛾) − 2𝐾𝐹𝛼0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 1

2
𝑏𝑐2

(
𝛼∗
0
(𝜃 + 1 − 2𝛾∗) + 𝑏𝑐2

8𝐾FT

(𝜃 − 𝛾∗)2 (3 + 𝜃 − 4𝛾∗)
)

The optimal values 𝛼∗
0
and 𝛾∗ satisfy:

(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
=

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

2(𝑏𝑐2 (𝛾∗−1) (𝜃−𝛾∗ )−4(𝐾PRE+𝐾G )𝛼∗
0
)

𝛼∗
0
(𝜃+1−2𝛾∗ )+ 𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗ )2 (3+𝜃−4𝛾∗ )
=

−𝑏𝑐2 ( (𝜃−𝛾∗ )2−𝑚 (𝜃−1)2)
𝑏𝑐2

8𝐾
FT

(𝜃−𝛾∗ )3+(𝜃−𝛾 )𝛼∗
0

,

where 𝜃 = 𝑎
𝑏𝑐
.

A.3 Proof of Theorem 4.4
To prove Theorem 4.4, we need to find 𝛼∗

0
, 𝛾∗ satisfying:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗),

𝑈
api
𝐹

≥ 0,

From A.1 and A.2, we know it is equivalent to find 𝛼∗
0
, 𝛾∗ satisfy-

ing:
(
16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2

)
𝛼∗
0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

Also, reasonable solution should satisfy 𝛼∗
0
> 0 and 1 < 𝛾∗ < 𝜃 .

𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with𝑈 api
𝐹

(𝛼0 =
0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

Define 𝛼1
0
= 𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾).

A.3.1 Case 1:𝑚 ≥ 1.

(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 < 0.

Thus, we must have:

(𝜃 − 1)4
𝐾FT + 𝐾G

<
(𝜃 − 𝛾∗)4
𝐾FT

⇒ (𝜃 − 𝛾)4 >

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1) .

We can always find 𝛾∗ to satisfy this condition.

Also,

𝛼0 <

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2

16(𝜃 − 𝛾∗)2 −𝑚(𝜃 − 1)2
= 𝛼cut

0
.

Thus, an example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= min{𝛼1

0
, 𝛼cut

0
}.

A.3.2 Case 2: 0 < 𝑚 < 1. .
If 0 ≤ 𝑚2 <

𝐾FT

𝐾FT+𝐾G

< 1 (when hardware cost is relatively low),

let

𝛾∗ ∈
(
1, 𝜃 −

(
𝐾FT

𝐾FT + 𝐾G

)
1/4

· (𝜃 − 1)
)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

< 0.

An example solution:
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +

(
𝐾FT

𝐾FT+𝐾G

)
1/4

· (𝜃 − 1)
)
,

𝛼∗
0
= 𝛼1

0
.

If
𝐾FT

𝐾FT+𝐾G

≤ 𝑚2 < 1 (when hardware cost is relatively high), let

𝛾∗ ∈
(
1, 𝜃 −𝑚1/2 · (𝜃 − 1))

)
,

which ensures: {
(𝜃 − 𝛾)2 −𝑚(𝜃 − 1)2 > 0,

(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

< 0.

An example solution:{
𝛾∗ = 𝜃 − 1

2

(
𝜃 − 1 +𝑚1/2 · (𝜃 − 1)

)
,

𝛼∗
0
= 𝛼1

0
.

A.4 Proof of Theorem 4.6
From A.5, with proactive open-source community, we have:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4 .

Same as A.2, the goal is to solve:

𝛼∗
0
, 𝛾∗ = argmax

𝛼0,𝛾
𝑈
api
𝐹

(𝛼∗
1
, 𝑝∗),

subject to:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) ≤ 𝑈 api

𝑆
(𝛼∗

1
, 𝑝∗) .

Similar as A.2, we can solve the problem with KKT. The only

difference is that

𝜕𝑈
self
𝑆

𝜕𝛼0
= 0
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A.5 Proof of Theorem 4.7
When 𝐼 = 0 and with a proactive open-source community, the

utility functions for the deployer 𝑆 and the developer 𝐹 are given

by:

𝑈
self
𝑆

= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝)𝛼1 − 𝐾 self
𝑆

(𝛼1 − 𝛼)2,

𝑈
self
𝐹

= 0,

where 𝐾
self
𝑆

= 𝐾𝐹𝑇 + 𝐾𝐺 .
Step 1: Solving for Optimal 𝑝∗ and 𝛼∗

1
for 𝑆

𝜕𝑈
self
𝑆

𝜕𝑝
= (𝑎 − 2𝑏𝑝 + 𝑏𝑐)𝛼1 = 0,

⇒ 𝑝∗ =
1

2

(𝑎
𝑏
+ 𝑐

)
.

𝜕𝑈
self
𝑆

𝜕𝛼1
= (𝑝 − 𝑐) (𝑎 − 𝑏𝑝) − 2𝐾

self
𝑆

(𝛼1 − 𝛼) = 0.

Substituting 𝑝∗ = 1

2

(
𝑎
𝑏
+ 𝑐

)
,

𝛼∗
1
= 𝛼 +

𝑏

(
𝑎
𝑏
− 𝑐

)
2

8(𝐾𝐹𝑇 + 𝐾𝐺 )
.

Thus, the optimal utility for 𝑆 in a self-hosting setup with proactive

𝑂 is:

𝑈
self
𝑆

(𝛼∗
1
, 𝑝∗) = 1

4

𝑏𝑐2 (𝜃 − 1)2𝛼 + 𝑏2𝑐4

64(𝐾𝐹𝑇 + 𝐾𝐺 )
(𝜃 − 1)4

, where 𝜃 = 𝑎
𝑏𝑐
.

Step 2: Confirming Developer’s Choice (Setting 𝐼 = 0)
Since 𝑈

self
𝐹

= 0 when 𝑆 chooses self-hosting, the developer 𝐹

gains no utility. This setup implies that the optimal strategy for the

developer is to exit the market, yielding:

𝛾∗ = 1, 𝛼∗
0
= 0, 𝐼∗ = 0.

A.6 Proof of Theorem 4.8
Contrary A.3, we need to illustrate: when 𝛼 is high, there is no

solution of 𝛼∗
0
, 𝛾∗ satisfying:

16(𝜃 − 𝛾∗)2𝛼∗
0
− 16(𝜃 − 1)2𝛼 >

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2,

𝑈
api
𝐹

= 1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

, where 𝜃 = 𝑎
𝑏𝑐
.

It is equivalent to:


16(𝜃 − 𝛾∗)2𝛼∗

0
>

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Denote𝑅 =

(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−𝛾∗ )4
𝐾FT

)
𝑏𝑐2+16(𝜃−1)2𝛼, 𝐿 = 16(𝜃−𝛾∗)2

Thus,


𝐿𝛼∗

0
> 𝑅,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

Lets 𝛼 >
(𝜃−1)4
𝐾FT

𝑏𝑐2, thus,
𝛼∗
0
> 𝑅
𝐿
> 0.,

1

2
𝑏𝑐2 (𝛾 − 1) (𝜃 − 𝛾)

(
𝛼0 + 𝑏𝑐2 (𝜃−𝛾 )2

8𝐾𝐹𝑇

)
− 𝐾𝐹𝛼20 > 0

As 𝑈
api
𝐹

(𝛼0) is a quadratic function, opening downward, with

𝑈
api
𝐹

(𝛼0 = 0) > 0 and axis of symmetry given by:

𝑏𝑐2

4𝐾𝐹
(𝛾 − 1) (𝜃 − 𝛾) > 0,

We only need to substitute 𝛼∗
0

= 𝑅
𝐿
in 𝑈

api
𝐹

(𝛼0∗) and show

𝑈
api
𝐹

(𝛼0) < 0 when 𝛼 is high.

𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
= −𝐾𝐹

(
𝑅

𝐿

)
2

+𝑏𝑐
2

2

(𝛾−1) (𝜃−1)𝑅
𝐿
+ 𝑏2𝑐4

16𝐾FT
(𝜃−𝛾)3 (𝛾−1)

= (−𝐾𝐹𝑅2 +
𝑏𝑐2

2

(𝛾 − 1) (𝜃 − 1)𝑅𝐿 + 𝑏2𝑐4

16𝐾FT
(𝜃 − 𝛾)3 (𝛾 − 1)𝐿2)/𝐿2 .

as



𝑅 ≥ 𝑅min = 𝑅(𝛾∗ = 1) =
(
(𝜃−1)4
𝐾FT+𝐾G

− (𝜃−1)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝑅 ≤ 𝑅 − 𝑏𝑐2 (𝜃−1)4
𝐾FT+𝐾G

= − (𝜃−𝛾∗ )4
𝐾FT

𝑏𝑐2 + 16(𝜃 − 1)2𝛼,

𝐿 ≤ 𝐿max = 𝐿(𝛾∗ = 1) = 16(𝜃 − 1)2,

𝜃 − 𝛾 ≤ 𝜃 − 1.

Thus,

𝐿2𝑈
api
𝐹

(
𝛼∗
0
=
𝑅

𝐿

)
≤ −𝐾𝐹

((
(𝜃 − 1)4
𝐾FT + 𝐾G

− (𝜃 − 𝛾∗)4
𝐾FT

)
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)2
+𝑏𝑐

2

2

(𝛾 − 1) (𝜃 − 1)
(
− (𝜃 − 𝛾∗)4

𝐾FT
𝑏𝑐2 + 16(𝜃 − 1)2𝛼

)
16(𝜃 − 1)2

+ 𝑏2𝑐4

16𝐾FT
(𝜃 − 1)3 (𝛾 − 1)162 (𝜃 − 1)4 .

Obviously, 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
is a quadratic function of 𝛼 , opening

downward. Thus, when 𝛼 is high enough to let 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
<

0, we cannot find a solution of 𝛼∗
0
, 𝛾∗ to make𝑈

api
𝐹

> 0, which the

equilibrium falls into self-hosting. The cut-off 𝛼𝐻 can be the right

root of 𝐿2𝑈
api
𝐹

(
𝛼∗
0
= 𝑅
𝐿

)
= 0
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A.7 Proof of Theorem 5.2
From A.5, we know 𝛼 ′∗

0
and 𝛾 ′∗ is the solution of

𝜕𝑈
api
𝐹

𝜕𝛼0
+ 𝜆( 𝜕𝑈

api
𝑆

𝜕𝛼0
− 𝜕𝑈

self
𝑆

𝜕𝛼0
) = 0,

𝜕𝑈
api
𝐹

𝜕𝛾 + 𝜆 𝜕𝑈
api
𝑆

𝜕𝛾 = 0,

𝑈
self
𝑆

= 𝑈
api
𝑆

However, 𝛼∗
0
and 𝛾∗ is the solution of:

𝜕𝑈
api
𝐹

𝜕𝛼0
= 0,

𝜕𝑈
api
𝐹

𝜕𝛾 = 0,

Also, we know that𝑈
self
𝑆

(𝛼∗
0
, 𝛾∗) > 𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗). Else it falls into

a API-dominant solution.

Part One: if

𝜕𝑈
api
𝑆

𝜕𝛼0
<
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
> 0. (26)

We know 
𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) > 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1)𝛼 ′∗
0

> 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0

(2) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) <

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) < 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

Thus, 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

Part Two: if

𝜕𝑈
api
𝑆

𝜕𝛼0
>
𝜕𝑈

self
𝑆

𝜕𝛼0
𝑎𝑛𝑑

𝜕2𝑈𝐹

𝜕𝛾𝜕𝛼0
< 0. (27)

We know 
𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) < 0,

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) > 0

We discuss the value of 𝛼 ′∗
0

and 𝛾 ′∗:

(1) 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ > 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾 ′∗, 𝛼 ′∗
0
) <

𝜕𝑈
api
𝐹

𝜕𝛾 (𝛾∗, 𝛼 ′∗
0
) < 𝜕𝑈

api
𝐹

𝜕𝛾 (𝛾∗, 𝛼∗
0
) = 0

(2) 𝛼 ′∗
0

< 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗: unreasonable. As

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾 ′∗, 𝛼 ′∗

0
) >

𝜕𝑈
api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼 ′∗

0
) > 𝜕𝑈

api
𝐹

𝜕𝛼0
(𝛾∗, 𝛼∗

0
) = 0

(3)𝛼 ′∗
0

< 𝛼∗
0
,𝛾 ′∗ > 𝛾∗: unreasonable. As𝑈 self

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)−𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾 ′∗)

>𝑈
self
𝑆

(𝛼 ′∗
0
, 𝛾∗) −𝑈 api

𝑆
(𝛼 ′∗

0
, 𝛾∗) >𝑈 self

𝑆
(𝛼∗

0
, 𝛾∗) −𝑈 api

𝑆
(𝛼∗

0
, 𝛾∗) > 0

Thus, 𝛼 ′∗
0

> 𝛼∗
0
, 𝛾 ′∗ < 𝛾∗ is the only feasible solution.

A.8 Proof of Theorem 5.3
The proof is the same as the Part Two of A.7
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Figure 4: Equilibrium Outcomes without Open-Source En-
gagement (𝑎 = 8, 𝑏 = 1, 𝑐 = 0.5, 𝐾𝐹𝑇 = 𝐾𝑃𝑅𝐸 = 1)

C Robustness Check of Numerical Results
We tested 256 combinations of parameter values, as detailed in

Table 1. The condition 𝑎 > 𝑏 · 𝑐 was enforced to ensure positive

utility. The results remain robust across all tested combinations.

Table 1: Parameter Settings for Robustness Check

Parameter Values

𝑎 8

𝑏 1, 1.5, 2, 2.5

𝑐 1, 1 + (𝑎/𝑏−1)
8

, 1 + (𝑎/𝑏−1)
4

, 1 + (𝑎/𝑏−1)
2

𝐾𝐹𝑇 1, 3, 6, 9

𝐾𝑃𝑅𝐸 1, 3, 6, 9

D Notations
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Table 2: Notations

Symbols Meanings

𝐹 closed-source foundation technology developer

𝑆 Domain-specific deployer

𝑂 Open-source community

𝑈 End user

𝑎 Total potential market demand

𝑏 Price sensitivity of end user

𝑐 Unit operation cost of foundation technology

𝛾 Price multiplier of API

𝛼0 Closed-source foundation technology performance

𝛼𝑠𝑜𝑐
0

Foundation technology performance at social level

𝛼 Open-source foundational technology performance

𝛼1 End technology performance

𝛼𝑠𝑜𝑐
1

End technology performance at social level

𝑚 Relative performance of open-source to closed-source foundational technology

𝐾𝐹 Cost factor for developing foundational technology

𝐾
api
𝑆

Cost factor for adapting technology in API scenario

𝐾
self
𝑆

Cost factor for adapting technology in self-hosting scenario

𝐾GPU Hardware cost parameter

𝐾𝑃𝑅𝐸 Non-hardware cost parameter for developing foundation technology

𝐾𝐹𝑇 Non-hardware cost factor for adapting technology

𝑝 Price of domain-specific technology

𝐷 Actual demand in the end market

𝑈𝑆 Utility of deployer 𝑆

𝑈𝐹 Utility of developer 𝐹

1501


	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Model Setting
	3.2 Game Process
	3.3 Solution of the Model

	4 Analysis of Separable Multiplicative Demand and Quadratic Cost
	4.1 Equilibrium without O
	4.2 Subgame Perfect Equilibrium with a Reactive O under a Fixed m
	4.3 Subgame Perfect Equilibrium with a Proactive O under a Fixed 

	5 Impact of Open-source Engagement on Foundation Technology Innovation
	5.1 Concave and Unimodal Utility
	5.2 Foundation Technology Innovation

	6 Conclusion
	References
	A Proofs
	A.1 Proof of Theorem  4.1
	A.2 Proof of Theorem  4.3
	A.3 Proof of Theorem  4.4
	A.4 Proof of Theorem  4.6
	A.5 Proof of Theorem 4.7
	A.6 Proof of Theorem  4.8
	A.7 Proof of Theorem  5.2
	A.8 Proof of Theorem  5.3

	B Figures
	B.1 Equilibrium Without Open-Source Engagement

	C Robustness Check of Numerical Results
	D Notations



